
Dynamic Formal Proof Presentation

Paul Jackson

Paul.Jackson@ed.ac.uk

School of Informatics
University of Edinburgh

TUPLE Student Conference
21st February 2024

1 / 15

Overview

Focus
I Challenges with reading and understanding proofs

I Examples from Lean, Nuprl & Coq
I Not assuming prior familiarity with any proof assistants

I Ideas on how to improve matters

Also
I Some other proof-assistant-related research directions

2 / 15

A procedural proof script (Lean)

theorem Nat.r2irrat_short :
¬ (∃ m n : N, Nat.Coprime m n ∧ m * m = 2 * n * n) :=

by
rintro 〈m, n, hcp, heq〉
have h2divm : 2 | m := by

apply Nat.two_div_square
simp [Nat.instDvdNat]
use n * n
linarith

have h2divn : 2 | n := by
apply Nat.two_div_square
simp [Nat.instDvdNat] at *
rcases h2divm with 〈cc, hcc〉
use cc * cc
nlinarith

rw [Nat.coprime_elim] at hcp
have h2eq1 := hcp 2 (And.intro h2divm h2divn)
linarith

3 / 15

A (semi) declarative proof (Lean)
theorem Nat.r2irrat_semi_decl :
¬(∃ m n : N, Nat.Coprime m n ∧ m * m = 2 * n * n) := by
rintro 〈(m : N), (n : N), (hcp : Nat.Coprime m n),

(heq : m * m = 2 * n * n)〉
show False
have h2divm : 2 | m := by

show 2 | m
apply Nat.two_div_square ; show 2 | m * m
simp [Nat.instDvdNat] ; show ∃ c, m * m = 2 * c
use n * n ; show m * m = 2 * (n * n)
linarith

have h2divn: 2 | n := by
show 2 | n
apply Nat.two_div_square ; show 2 | n * n
simp only [Nat.instDvdNat] ; show ∃ c, n * n = 2 * c
. . .

have hhcp : ∀ (c : N), c | m ∧ c | n → c = 1 := by
rw [Nat.coprime_elim] at hcp ; assumption

have h2eq1 : 2 = 1 := hhcp 2 (And.intro h2divm h2divn)
linarith 4 / 15

Subgoal tree made by a procedural proof script (Nuprl)
` ¬(∃m,n:Z. CoPrime(m,n) ∧ m * m = 2 * n * n)
|
BY D 0 THENM ExRepD
|
1. m: Z
2. n: Z
3. CoPrime(m,n)
4. m * m = 2 * n * n
` False
|
BY Assert d2 | me

|\
| ` 2 | m
| |
| BY BLemma ‘two_div_square‘ THENM Unfold ‘divides‘ 0 THENM AutoInstConcl []
\
5. 2 | m
|
BY Assert d2 | ne

|\
| ` 2 | n
| |
| BY BLemma ‘two_div_square‘ THENM All (Unfold ‘divides‘) THENM ExRepD
| THENM Inst [dc * ce] 0 THENM RWO "6" 4 THEN Auto
\
6. 2 | n
|
BY RWO "coprime_elim" 3 THENM FHyp 3 [5;6]
|
3. ∀c:Z. c | m ⇒ c | n ⇒ c ∼ 1
7. 2 ∼ 1
|
BY RWO "assoced_elim" 7 THENM D (-1) THEN Auto

5 / 15

Elision of repeated declarations, hypotheses, conclusions

With elision
...
|
1. m: Z
2. n: Z
3. CoPrime(m,n)
4. m * m = 2 * n * n
` False
|
BY Assert d2 | me

|\
| ` 2 | m
| |
| ...
\
5. 2 | m
|
...

Without elision
...
|
1. m: Z
2. n: Z
3. CoPrime(m,n)
4. m * m = 2 * n * n
` False
|
BY Assert d2 | me

|\
| 1. m: Z
| 2. n: Z
| 3. CoPrime(m,n)
| 4. m * m = 2 * n * n
| ` 2 | m
| |
| ...
\
1. m: Z
2. n: Z
3. CoPrime(m,n)
4. m * m = 2 * n * n
5. 2 | m
` False
|
...

6 / 15

Focussing on a proof step

* top 1 2

1. m: Z
2. n: Z
3. CoPrime(m,n)
4. m * m = 2 * n * n
5. 2 | m
` False

BY Assert d2 | ne

1* ` 2 | n

2* 6. 2 | n
` False

7 / 15

Viewing more detail
Original proof
1. m: Z
2. n: Z
3. CoPrime(m,n)
4. m * m = 2 * n * n
5. 2 | m
` 2 | n
|
BY BLemma ‘two_div_square‘

THENM All (Unfold ‘divides‘)
THENM ExRepD
THENM Inst [dc * ce] 0
THENM RWO "6" 4
THEN Auto

Expanded proof
1. m: Z
2. n: Z
3. CoPrime(m,n)
4. m * m = 2 * n * n
5. 2 | m
` 2 | n
|
BY BLemma ‘two_div_square‘
|
` 2 | n * n
|
BY All (Unfold ‘divides‘)
|
5. ∃c:Z. m = 2 * c
` ∃c:Z. n * n = 2 * c
|
BY ExRepD
|
5. c: Z
6. m = 2 * c
|
BY Inst dc * ce 0
|
` n * n = 2 * c * c
|
BY RWO "6" 4
|
4. (2 * c) * 2 * c = 2 * n * n
|
BY Auto

8 / 15

A proof outline
*T root_2_irrat_over_int

` ¬(∃m,n:Z. CoPrime(m,n) ∧ m * m = 2 * n * n)
|
BY Assume negation of goal and aim for proof by contradiction
|
1. m: Z
2. n: Z
3. CoPrime(m,n)
4. m * m = 2 * n * n
` False
|
BY From hyp 4, deduce that 2 | m
|
5. 2 | m
|
BY From hyps 4 and 5, deduce that 2 | n
|
6. 2 | n
|
BY Observe that hyps 5 and 6 contradict hyp 3

9 / 15

Related work

I Alectryon generates proof displays with foldable intermediate
goals for the Coq proof assistant.
I Extended examples (e.g. Vol 1 of Software Foundations)

(Clément Pit-Claudel)

I LeanInk extends Alectryon to work with Lean.
(Niklas Bülow)

I Logique et démonstrations assistées par ordinateur – a
Lean-based logic course
I Click on grey rectangles to see formal goals
I Click on French exposition lines in the Démonstration blocks

to hide and reveal corresponding formal steps

(Patrick Massot)

10 / 15

https://github.com/cpitclaudel/alectryon
https://alectryon-paper.github.io
https://github.com/leanprover/LeanInk
https://www.imo.universite-paris-saclay.fr/~patrick.massot/mdd154/

Proof Informalization

Taking formal proofs and automatically generating informal proofs
with folded further details.

https://kmill.github.io/

(Patrick Massot & Kyle Miller)

11 / 15

https://kmill.github.io/

Paperproof

Reorganises Lean proofs into Natural Deduction graphs

https://github.com/Paper-Proof/paperproof

(Evgenia Karunus & Anton Kovsharov)

12 / 15

https://github.com/Paper-Proof/paperproof

Future challenges and opportunities

I Engineering the UI

I Languages & support for literate proof developments

I Viewing vs editing technologies

I Subgoal trees vs. subgoal stacks – metavariables

I Improving tracing of automatic procedures

See Dynamic Proof Presentation paper for further details.

13 / 15

https://homepages.inf.ed.ac.uk/pbj/papers/dyn-proof-pres-21.pdf

Summary
Proof assistant have a variety of uses:
I Formal Verification (compilers, OS microkernels, security

applications)
I Education (UG maths, computer science)
I Research (PL theory, maths)

WIth many, understanding proofs is important, but is often hard.

This talk has argued that
I better presentation of proof structure can help,
I dynamic presentation is better than static.

Are many other opportunities to dynamically present and explain
I formulas and expressions,
I tactics,
I libraries.

14 / 15

Further information on Proof Assistant Research

Kinds
I Applications
I Foundations
I Systems Engineering
I Use of Machine Learning

(IMO Grand Challenge)

Conferences
I ITP (Interactive Theorem Proving)
I CPP (Certified Programs and Proofs)
I CICM (Intelligent Computer Mathematics)

Workshops
For Lean, Coq, Agda, Isabelle, ACL2.

15 / 15

https://imo-grand-challenge.github.io
https://itp-conference.github.io
https://popl24.sigplan.org/home/CPP-2024
https://cicm-conference.org/cicm.php

