
Domain Theory
Part 6: Non-determinism

Dr. Liam O’Connor
based on material from

Glynn Winskel, Gordon Plotkin, Kai Engelhardt, Dexter Kozen, Andrew Myers, Carl Gunter

March 27, 2024

1 Introduction

This lecture concerns semantics for non-deterministic computations. When modelling pro-
gramming languages we sometimes require a way to be imprecise about some aspects of a
program — usually, this takes the form of non-determinism. Non-determinism can be hard
for beginners to grasp, but it typically has to be employed when modelling real programs.
For example, suppose we had a greeting program that differed depending on the physical
location of the computer1:

if currentLocation() = Korea then
say “안녕하세요”

else
say “Hello!”

fi

If we wanted to mathematically model the behaviour of this program, it would be frightfully
inconvenient to include the geography of Earth and the computer’s physical location in our
model. That’s where non-determinism comes in. If we abstract away from the geographical
details, and instead regard the program as choosing between the two options based on some
unspecified criteria, then we can get away with modelling less, at the cost of some detail:

if ??? then
say “안녕하세요”

else
say “Hello!”

fi

Such underspecified conditionals are usually called non-deterministic choice, where our
conditional if ??? then P else Q fi is written simply as P +Q.

While we tend to view our physical machines as deterministic automata, the state upon
which each decision is deterministically made includes a number of external things which
are tedious to model mathematically. We can also use non-determinism to ignore details
that we don’t care about for our particular domain – a common example is memory allo-
cation, where it is very convenient (for some programs) to think of memory as infinite, and
allocation as an operation that can potentially fail, without specifying exactly when and how
this failure can occur. This is normally modelled as a choice between successful allocation
and a failure state.

1Further internationalisation is le� as an exercise

1

In a deterministic setting, such as the imperative language C we saw in Lecture 1, we usu-
ally model semantics of a program as a function – given an initial state, there will be one
final state determined entirely by the initial state (or ⊥ in the case of non-termination). But,
with non-determinism, each use of the choice operator potentially doubles the number of
final states2. So, with non-determinism in our language, there are multiple possible final
states for a given initial state.

Example from Lecture 1 (A Simple Imperative Language)

Recall the simple imperative language C from Lecture 1:

E ::= n | x | E1 + E2 | E1 − E2
B ::= false | true | ¬B | E1 = E2
C ::= skip | x := E | C1;C2 | if B then C1 else C2 | while B do C od

x ∈ V (variables)
n ∈ Z

In Lecture 1, we gave a semantics to imperative programs (without while) in terms of func-
tions on statesΣ → Σ. Later, we showed that, by using a cpo such asΣAΣ⊥ for our semantic
domain, we have least fixed points and can therefore assign semantics to while loops. Since
non-deterministic programs can have more than one outcome, a natural choice of seman-
tic domain would be ΣA P(Σ⊥) \ ∅, i.e., functions from an initial state to a non-empty set of
outcomes.

2 Generalising Semantics

Definition

A monad on the category C consists of an endofunctor M : C → C and two operationsa

for all C-objects X: µX : M(M(X)) → M(X) and ηX : X → M(X), such that the following
diagrams commute:

M(M(M(X))) M(M(X))

M(M(X)) M(X)

M(µX)

µM(X) µX

µX

M(X) M(M(X))

M(M(X)) M(X)

ηM(X)

M(ηX) µX

µX

In equational form, these laws are

1. µX ◦M(µX) = µX ◦ µM(X)

2. µX ◦M(ηX) = µX ◦ ηM(X) = idM(X)

In computer science, ηX is sometimes called unit, pure, or return, and µX is usually
called join.

It is o�en convenient to instead work in the Kleisli category of the monad M. For a
monad (M, µ, η) over the category C, the Kleisli category has the same objects as C, but
the morphisms A

h−→ B are those morphisms h of C that have the form A
h−→ M(B).

2This is why deterministically simulating a non-deterministic program is exponential complexity in the worst-
case.

2

Composition is defined as follows, for morphisms A
f−→ M(B) and B

g−→ M(C):

g ◦K f = µC ◦M(g) ◦ f

Identity morphisms for this category are just η.
aThese operations are natural transformations – morphisms in the category of functors, but we omit this

detail here.

Example

Our familiar flat domain li�ing operation (·)⊥ forms a monad, where the endofunctor
M(X) = X⊥, the operationµX : (X⊥)⊥ → X⊥ collapses the two⊥ values, and ηX : X → X⊥
is simply ηX(x) = x.

Instead of committing to a particular semantic domain, let’s define our semantics generi-
cally in terms of a monad (M,µ,η):

ite : (Σ → B)× (Σ → M(Σ))× (Σ → M(Σ)) → (Σ → M(Σ))

ite(b, t, e)(σ) =

{
t(σ) if b(σ) = T

e(σ) otherwise

J·KC : C → Σ → M(Σ)

JskipKC = ηΣ
Jx := eKC = λσ. σ (x 7→ JeKE)
Jc1; c2KC = Jc2KC ◦K Jc1KC
Jif b then c1 else c2KC = ite(JbKB, Jc1KC, Jc2KC)
Jwhile b do c odKC = fix(λf. ite(JbKB, f ◦K JcKC,ηΣ))

We can provide η and µ operations for our proposed monad for non-determinism M(X) =
P(X⊥) \ ∅:

η : X → P(X⊥) \ ∅
η(x) = {x}

µ : P((P(X⊥) \ ∅)⊥) → P(X⊥) \ ∅
µ(S) = (

⋃
X ̸=⊥∈S X) ∪ (S ∩ {⊥})

And, with this semantics, we can easily add a denotation for non-deterministic choice, in
terms of union:

Jc1 + c2KC = λσ.Jc1KCσ ∪ Jc2KCσ

Unfortunately this is only the beginning of our troubles. While we have given a valuation
function above, its definition uses fix, and therefore our domain Σ → M(Σ) must be a cpo,
and all our operations continuous. It is not clear how to order elements of P(X⊥) \ ∅.

3 Powerdomains

If we consider our domain P(X⊥) \ ∅, a natural choice of ordering would be subset inclusion
⊆. However, as we lack ∅, there is no least element for this ordering. Furthermore, simply
using ⊆ as our ordering would mean that the deterministic, terminating program that al-
ways returns a single state {σ} would be considered less informative than the program that
may diverge {⊥,σ}. This would make most of our operations non-continuous.

Instead, we shall examine three separate orderings on this set, each of which carries a
different view of non-determinism. More generally, we wish to come up with a construction

3

analogous to the powerset operator P, but for our semantic domains (i.e. Scott domains).
It is convenient at this point to switch from cpos to Scott domains, as the algebraicity of
Scott domains is useful here. As Scott domains are ω-algebraic, and all algebraic domains
D are isomorphic to the ideal completion of their compact elements D ≃ Id(K(D)), we lose
nothing by working only with compact elements.

Reminder: Ideals

An ideal is a downwards-closed directed set. The ideal completion of a set A, written
sometimes as Id(A), is the set of all ideal subsets of A, i.e.:

Id(A) = {X ⊆ A | X is ideal}

3.1 The Hoare Powerdomain

We write P∗
f(S) to denote finite non-empty subsets of S. Let X, Y ∈ P∗

f(K(A)) be finite, non-
empty sets of compact elements of a Scott domain A. The Hoare powerdomain construction
is based on the following ordering:

X ⪯H Y iff (∀x ∈ X. ∃y ∈ Y. x ⊑A y)

The intuition behind this is that “AnythingX can do, Y can do better”. This ordering has some
desirable properties: The least element is {⊥}, as we might expect. It also satisfies the equa-
tion X ⪯H X ∪ Y, which intuitively means that a non-deterministic choice is considered to
have more information than any of its components. When specialised to the case where A

is a flat domain like Σ⊥, it simplifies to:

X ⪯H Y iff X \ {⊥} ⊆ Y

This is, however, not a proper order, but a preorder, as it fails antisymmetry. Even in the flat
domain case, {x,⊥} ⪯H {x} and {x} ⪯H {x,⊥} but they are not equal. However, any preorder
does induce an equivalence relation, where X ≈H Y iff X ⪯H Y and Y ⪯H X. Furthermore, if
we take the ideal completion of P∗

f(K(A)) with respect to the preorder ⪯H (i.e., the set of all
⪯H-downwards-closed directed subsets of P∗

f(K(A))), we can order them by inclusion to ob-
tain an algebraic domain with compact elements which correspond to equivalence classes
of elements under ≈H. We have a lub operation for these ideals and thus our cpo is directed:

A ⊔H B = {X ∪ Y | X ∈ A∧ Y ∈ B}

Example

Let us find the Hoare powerdomain of N⊥. Note that N⊥ is a flat domain so all elements
are compact, i.e. K(N⊥) = N⊥. Let us find examine the ⪯H-ideal subsets of P∗

f(N⊥). If v
and u both contain ⊥, then v ⪯H u iff v ⊆ u. As ideal subsets are downwards closed,
we can identify an ideal I ∈ Id(P∗

f(N⊥)) with its union
⋃
I. The ideals of P∗

f(N⊥) are then
isomorphic to domain P(N) of all subsets of N under subset inclusion.

Consider the following three programs:

1. x := 1

2. while true do skip

3. while true do skip od + x := 1

Given a state σ, let σ ′ = σ(x 7→ 1). Then, the possible results of these programs are {σ ′},
{⊥}, and {σ ′,⊥} respectively. Because our construction identifies ≈H-equivalent sets, this
semantics will consider programs 1 and 3 to be the same. That is, the non-determinism here
is angelic. The bad outcome (⊥) is only said to happen if it is inevitable.

4

3.2 The Smyth Powerdomain

As before, let X, Y ∈ P∗
f(K(A)) be finite, non-empty sets of compact elements of a Scott do-

main A. The Smyth powerdomain construction is based on the following preorder:

X ⪯S Y iff (∀y ∈ Y. ∃x ∈ X. x ⊑A y)

The intuition here is “Everything Y can do, X can do worse”. It satisfies the equation X ∪
Y ⪯S X, which intuitively means that a non-deterministic choice is considered to have less
information than any of its components. When applied to a flat domain, it simplifies to:

X ⪯S Y iff ⊥ ∈ X∨ Y ⊆ X

Once again, this fails to be a partial order, but we can use the same ideal completion trick to
induce an algebraic domain where compact elements correspond to equivalence classes of
elements under ≈S (where X ≈S Y is, as with ≈H, just defined as X ⪯S Y ∧ Y ⪯S X).

Example

Let us find the Smyth powerdomain of N⊥. Firstly, note that, as ideals are downwards-
closed, any ⪯S-ideal subsets of P∗

f(N⊥) will contain all finite subsets of N⊥ that con-
tain ⊥. Let us call those sets trivial. So, a set in P∗

f(N⊥) is non-trivial if it does not con-
tain ⊥ and an ideal subset of P∗

f(N⊥) is non-trivial if it contains a non-trivial set. Ob-
serve that for non-trivial sets X and Y, X ⪯S Y iff X ⊇ Y. Thus, we can identify an ideal
I ∈ Id(P∗

f(N⊥)) with the down-closure of the intersection of its non-trivial elements. The
smaller this set is, the larger the ideal I. Hence, and confusingly, the non-trivial ideals
in the powerdomain (ordered by subset inclusion) correspond to finite subsets of N or-
dered by superset inclusion. As all trivial sets are identified, we just need to throw the
unique trivial ideal, and we can see that the Smyth powerdomain of N is isomorphic to
the domain of sets {N} ∪ P∗

f(N) ordered by subset inclusion.

Note that all sets that contain with ⊥ are considered equivalent by ≈S. Thus, this models
demonic non-determinism: Of the three programs in the previous section, this semantics
considers 2 and 3 to be the same. Thus, the possibility of divergence ⊥ is no different from
inevitable divergence.

3.3 Plotkin Powerdomain

As before, let X, Y ∈ P∗
f(K(A)) be finite, non-empty sets of compact elements of a Scott do-

main A. The Plotkin powerdomain construction is based on the following preorder, simply
combining the previous two:

X ⪯P Y iff X ⪯H Y ∧ X ⪯S Y

This ordering is also called the Egli-Milner ordering. On a flat domain, it simplifies to:

A ⊑ B iff A = B∨ (⊥ ∈ A∧ (A \ {⊥}) ⊆ B)

Note that this is antisymmetric in the case of a flat domain, and the lub of a chain of sets
S can be found by taking the union of all elements of the chain if all elements contain ⊥. If
not, then the element without ⊥ will be the upper bound.

The failures of antisymmetry can only be observed in domains of height higher than one.
Consider a set {x,y} containing two elements. According to the induced equivalence from

5

this preorder ≈P, this set would be considered equal to the set that contains those two ele-
ments plus any elements that lie between them on the information ordering:

{x,y} ≈P {z | x ⊑ z ⊑ y}

The Plotkin powerdomain is sometimes called the convex powerdomain, due to the similar-
ity of this to the geometric definition of convexity. Thus, we use the ideal-completion trick
here to arrive at a definition of powerdomain that distinguishes between all three programs
outlined in Section 3.1.

Aside

There is a beautiful algebraic characterisation of Plotkin Powerdomains in:
Matthew Hennessy and Gordon D. Plotkin. 1979. Full Abstraction for a Simple Parallel
Programming Language. In Mathematical Foundations of Computer Science 1979, Pro-
ceedings, Olomouc, Czechoslovakia, September 3-7, 1979 (LNCS, Vol. 74), Springer, 108–120

Glossary

choice An operator, P+Q that represents non-deterministic execution of P or of Q, but it is
not known which . 1–5

Hoare powerdomain The power domain of A induced by the ideal completion of the finite
non-empty subsets of K(A) ordered by the Hoare preorder:

X ⪯H Y iff (∀x ∈ X. ∃y ∈ Y. x ⊑A y)

. 4, 6

Kleisli category A category induced from a monad M on a category C, whose objects are the
same as C but whose morphisms X

m−→ Y are those of the form X
m−→ M(Y) in C. 2

monad A monoid in a category of endofunctors. Specifically, amonad on the categoryC con-
sists of an endofunctor M : C → C and two natural transformations µX : M(M(X)) →
M(X) and ηX : X → M(X), such that µX ◦ M(µX) = µX ◦ µM(X) and µX ◦ M(ηX) =
µX ◦ ηM(X) = idM(X). 2, 3, 6

non-deterministic A program isnon-deterministic if it can (as specified) have more than one
final state for a given initial state . 1–6

Plotkin powerdomain The power domain of A induced by the ideal completion of the finite
non-empty subsets of K(A) ordered by the Egli-Milner preorder:

X ⪯P Y iff X ⪯H Y ∧ X ⪯S Y

where ⪯S and ⪯H are the preorders from the Smyth powerdomain and Hoare power-
domain respectively . 5, 6

preorder A relation that is reflexive and transitive, but not necessarily antisymmetric. 4–6

Smyth powerdomain The power domain of A induced by the ideal completion of the finite
non-empty subsets of K(A) ordered by the Smyth preorder:

X ⪯S Y iff (∀y ∈ Y. ∃x ∈ X. x ⊑A y)

. 5, 6

6

	Introduction
	Generalising Semantics
	Powerdomains
	The Hoare Powerdomain
	The Smyth Powerdomain
	Plotkin Powerdomain

