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1 Introduction

Suppose we have a language with recursive data types, such as this List type:

data List = Nil | Cons (Int × List)

As we saw previously with PCF, the denotation of a type τ is the domain which contains all the
denotations of all closed expressions of type τ. What, then, is the domain that corresponds
to List a? If we can find a cpo L such that1:

L ≃ 1+ (Z⊥ × L)

Then this cpo L would serve adequately as a semantics. Similarly, in untyped lambda calcu-
lus, lambda values can only be functions on lambda values:

D ≃ DAD

How can we find solutions to such recursive equations? How can we guarantee the existence
of a (least) solution?

2 From Elements to Domains

We can start by generalising the fixed point approach we used for values (i.e. elements of
cpos) to domains (i.e. cpos themselves).

Example

Our previous equations for lists:

L ≃ 1+ (Z⊥ × L)

Can be expressed as the least fixed point of this mapping (specifically an endofunctor)
F on cpos:

F(A) ≜ 1+ (Z⊥ ×A)

To ensure that least fixed points exist, and to give us a means of finding them, we must now
generalise all of the concepts we used for least fixed points on values (information ordering,
least upper bounds, continuity etc.) to domains themselves.

1where 1 is the CPO containing just one element ⊥.
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2.1 Information Ordering

Note

We will see later that this definition is insufficient when using function constructions,
but it will suffice for our purposes for now.

Let us say (for now) that a cpo A approximates a cpo B (i.e. A ⊑ B) iff there is a continuous
function f : A A B. Then, there is a least element for this ordering: the one-element cpo
1 = {⊥}, as the continuous function (λx.⊥) : 1AA exists for any cpo A.

Categorical aside

The categoryCpohas no initial object. The cpo 1 is terminal; but also serves as a “pseudo”
initial object due to the above.

2.2 Chains and Lubs

An ω-chain in this context consists of a family of cpos {Ai | i ∈ N}, together with a family
continuous functions {fi : Ai AAi+1 | i ∈ N}, shown below2:

A0 A1 A2 A3
f0 f1 f2

A cpo A is an upper bound of such an ω-chain if there is a family of continuous functions
{gi : Ai A A | i ∈ N} such that the following diagram commutes (i.e. gi = gi+1 ◦ fi for all
i ∈ N):

A

· · ·

A0 A1 A2 A3
f0

g0

f1

g1

f2

g2
g3

A cpo A is the least upper bound of such an ω-chain if there further exists a unique k for
any other upper bound B such that the following diagram commutes (i.e. hi = gi ◦ k for all
i ∈ N):

B

· · ·

A

· · ·

A0 A1 A2 A3

k

f0

h0

g0

f1

g1

h1

f2

g2

h2

g3

h3

The least upper bound of such an ω-chain is also called its colimit.

2Once again, note this definition will be strengthened when we strengthen our information ordering later on.
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Note

Uniqueness of lubs is up to isomorphism. That is, if A and B are both colimits of our
ω-chain, then A ≃ B.

2.3 Monotonic and Continuous Functions

Endofunctors

An endofunctor on the category Cpo is a functor Cpo→ Cpo, that is a mappingF on cpos
together with a mapping F on continuous functions, such that:

1. If f : AA B then F(f) : F(A)A F(B)

2. F(idA : AAA) = idF(A) : F(A)A F(A)

3. F(f ◦ g) = F(f) ◦ F(g)

Observe that, given our information ordering for cpos given earlier, the functor laws neces-
sarily imply monotonicity for all functors F.

Because our generalisation of lubs is a colimit, our notion of continuity for a functor F is
called cocontinuity. An functor F is cocontinuous iff it preserves colimits of ω-chains. That
is, given this chain where A is a colimit:

A

· · ·

A0 A1 A2 A3
f0

g0

f1

g1

f2

g2
g3

Then F(A) is a colimit in the following chain:

F(A)

· · ·

F(A0) F(A1) F(A2) F(A3)
F(f0)

F(g0)

F(f1)

F(g1)

F(f2)

F(g2)
F(g3)

2.4 Fixed Points

A fixed point of endofunctor on cpos F is a cpo F such that F(A) ≃ A.

Note

In Scott’s approach, which we follow here, our fixed points are up to isomorphism (suit-
able for languages with isorecursive types), but there are other approaches where they
are equalities (suitable for languages with equirecursive types).
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Our fixed point theorem generalises much as one might expect:

Theorem: Every cocontinuous endofunctor F on cpos has a least fixed point, given by the
colimit of the ω-chain:

1 F(1) F(F(1)) F(F(F(1)))λx.⊥ F(λx.⊥) F(F(λx.⊥))

Example

Consider the Haskell-style data type:

data Bin = Zero Bin | Empty | One Bin

So, e.g. One (Zero (One Empty)) : Bin. The recursive domain equation is, expressed as a
fixed point:

B ≃ F(B) where F(X) = X+ 1+ X

We wish to show that F is a cocontinuous endofunctor. We have a mapping F on cpos
(objects of the category Cpo), but for it to be a functor we additionally need a mapping
F on continuous functions (morphisms of the category Cpo).

Recalling our sum construction from previous lectures, we may remember that sums
are already a bifunctor Cpo × Cpo → Cpo. Thus, our mapping on continuous functions
F can be derived from our mapping on cpos F by using the morphism mapping from the
sum construction. Given a continuous function f : AA B, our morphism mapping is:

F(f) : F(A)A F(B)

F(f) ≜ f+ id1 + f

Where (+) : (AA B)× (CAD) → (A×C)A (B×D) is the function defined in previous
lectures. Proof that this endofunctor is cocontinuous is le� as an exercise. Hence the
semantics of the type Bin, i.e. JBinK : Cpo is the least fixed point of F, i.e. the colimit of
the ω-chain:

1 F(1) F(F(1)) F(F(F(1)))λx.⊥ F(λx.⊥) F(F(λx.⊥))

Let us visualise this chaina:

⊥ ⊥

Z(⊥) E O(⊥)

⊥

Z(⊥) E O(⊥)

Z(Z(⊥)) Z(E) Z(O(⊥)) O(Z(⊥)) O(E) O(O(⊥))

Thus, the nth cpo in the chain contains binary numbers with at most n defined digits.
The colimit of the chain contains all binary numbers (finite, partial, and infinite!).
aHere the sum injections have been written as Z, E, O rather than (combinations of) inl and inr to keep the

connection with the Haskell data type clear.
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3 From Cpo to CpoR

Given a mapping on cpos F : Cpo → Cpo that is made up of the primitives ×, +, ⊗, ⊕, 1 and
(·)⊥, we can extend it to an endofunctor by using the underlying functor structure of these
constructions, generating a morphism mapping F : (AA B) → (F(A)A F(B)).

Examples

F(X) = X+ 1 ⇝ F(f) = f+ id1 ((co)-natural numbers)
F(X) = 1+ (Z⊥ × X) ⇝ F(f) = id1 + (idZ⊥ × f) ((co)-lists of integers)

A Serious Problem

This approach breaks down for ◦A and A, as they are contravariant in their first argu-
ment. This means the functor that extend to is not Cpo → Cpo but Cpoop → Cpo. The
morphisms end up the wrong way around.

As an example, consider F(X) = XA Z⊥. Then, recalling the morphism mapping of the
A functor:

f : AA B g : CAD

fAg : (BA C)A (AAD)

We can generate a morphism mapping for F:

F(f) = fAidZ⊥ = (λh. idZ⊥ ◦ h ◦ f) = (λh. h ◦ f)

However, this mapping has the wrong type. For f : A A B, then F(f) : (B A Z⊥) →
(A A Z⊥), which is F(B) A F(A), not the required F(A) A F(B). This is because the
generated functor is contravariant, not covariant.

3.1 Retraction Pairs

Rather than solve our recursive equations using fixed points of endofunctors on Cpo (the
category of cpos and continuous functions), we will use endofunctors on CpoR, the category
of cpos and retraction pairs.

Definition

A retraction pair (f,g) on cpos A to B consists of continuous functions A B
f

g
s.t.:

1. g ◦ f = idA (i.e. ∀x ∈ A. g(f(x)) = x)

2. f ◦ g ⊑ idB (i.e. ∀y ∈ B. f(g(y)) ⊑ y)

In this retraction pair, f is called a embedding and g is called a projection.

Retraction pairs are weakenings of isomorphisms. Going AA BAA, all information is pre-
served due to requirement 1, but going B A A A B may lose some information (hence the
use of ⊑ in requirement 2). Using retraction pairs instead of mere continuous functions as
our morphisms will enable us to assign a semantics to recursive function types, but first, let
us familiarise ourselves with them.
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Examples and Counterexamples

Some examples of retraction pairs:

z

b y

a x

z

b y

a x

(this demonstrates that there can be many retraction pairs A B
f

g
)

The following, however, are not retraction pairs:

z

b y

a x

z

b y

a x

(y 7→ b 7→ z but z ̸⊑ y) (b 7→ x 7→ a but a ̸= b)

We can compose retraction pairs by composing their embeddings and projections:

A B C ⇝ A C
f

g

h

i

h◦f

g◦i

It follows from the definition of retraction pairs that, for a pair A B
f

g
:

1. f and g are strict, i.e. f(⊥) = ⊥ and g(⊥) = ⊥.

2. g is uniquely determined by f and vice-versa, so if another retraction pair A B
f

g ′

exists, then g = g ′. To see why, remember that f and g must be continuous and there-
fore monotonic.

3. A is isomorphic to the range of f, i.e. {f(x) | x ∈ A}.

This last fact allows us to define a more intuitive notion of approximation, or information
ordering, for cpos. Rather than say that for cpos A and B, A ⊑ B iff there exists a continuous
function AA B, we now say that:

A ⊑ B iff there exists a retraction pair A B
f

g
.

3.2 Generalising Fixed Points

Fact

All of our other notions for Cpo naturally generalise to a setting with retraction pairs
CpoR: least elements, ω-chains, upper bounds, colimits, cocontinuous endofunctors. . .
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Our fixed point theorem is exactly the same as before, except we now will use retraction
pairs instead of continuous functions.

Theorem: Every cocontinuous endofunctor F on CpoR has a least fixed point, given by the
colimit of the ascending ω-chain:

1 F(1) F(F(1)) F(F(F(1))) · · ·
f0

g0

f1

g1

f2

g2

Where the retraction pairs (fi,gi) are defined by:

(f0,g0) ≜ (λx.⊥, λx.⊥)

(fi+1,gi+1) ≜ F(fi,gi)

3.3 Extending Cpo Mappings to Endofunctors on CpoR

Fact

If F is a mapping on cpos built up from basic cpos using the constructions ×, ⊗, +, ⊕,
(·)⊥, aswell asA and ◦A, thenF extends to a (covariant!) cocontinuous functor onCpoR.

3.3.1 Products

Given two retraction pairs (f,g) and (h, i), our retraction pair for their product is just the
product of their embeddings and projections, i.e. (f× h,g× i), using the product operation
on continuous functions from previous lectures:

A B
f

g
C D

h

i

A× C B×D
f×h

g×i

3.3.2 Functions

We are given two retraction pairs A B
f

g
and C D

h

i
.

To define a suitable covariant functor, we define our morphism mapping in terms of the A

operation on continuous functions defined in earlier lectures:

(f,g)A(h, i) ≜ (gAh, fAi)

Note that the positions of f and g are swapped in the above definition.

A B
f

g
C D

h

i

AA C BAD
gAh

fAi

Unlike previously with the category Cpo, this functor is covariant: Note the positions of A
and B are not swapped!
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3.4 Details of the Colimit

Definition

Given an ω-chain of retraction pairs:

D0 D1 D2 D3 · · ·
f0

g0

f1

g1

f2

g2

The colimit (or inverse limit) is the set of ω-tuples:

D∞ ≜ {(x0, x1, . . . ) | xi ∈ Di ∧ xi = gi(xi+1)}

That is, it is countable sequence of elements, one for each domain Di, where each ele-
ment is consistent with earlier elements.

Ordering: The ordering is the pointwise ordering of products, naturally generalised to
ω-tuples. Under this ordering, D∞ is a cpo. In fact if each Di is a Scott domain, so is D∞.

Let us prove that D∞ is an upper bound of the ω-chain. We must construct a family of re-
traction pairs: {

Di D∞θi,∞
θ∞,i

∣∣∣∣∣ i ∈ N

}
such that the following diagram commutes:

D∞
· · ·

D0 D1 D2 · · ·
f0

g0

f1

g1

Defining the projections of the retraction pairs Di D∞θ∞,i

θ∞,i

is straightforward:

θ∞,i(x0, x1, . . . ) ≜ xi

However, to define the embeddings θi,∞ requires us to, for a given value x ∈ Di, produce an
ω-tuple of values consistent with x in every domain Dk. We do this by defining θi,∞ in terms
of helper functions θi,j:

θi,∞(x) ≜ (θi,0(x), θi,1(x), θi,2(x), . . . )

The helper functions θi,j are defined by composing sequences of embeddings (fs) or projec-
tions (gs), depending on whether i < j or j < i. For example, when i = 2:

θ2,∞(x) = (θi,0(x), θi,1(x), θi,2(x), θi,3(x), θi,4(x), . . . )

= (g0(g1(x))),g1(x)︸ ︷︷ ︸
approximations to x

, x, f2(x), f3(f2(x)), . . .︸ ︷︷ ︸
equivalent to x

)
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Fact

D∞ is the colimit of the ω-chain:

D0 D1 D2 D3 · · ·
f0

g0

f1

g1

f2

g2

4 Untyped λ calculus

Recall the untyped λ calculus:
e ::= x | e1 e2 | λx. e

We mentioned before that the semantic domain of this language must be a cpo D such that

D ≜ DAD

In other words, solutions to this equation are fixed points of F(X) = X A X. The least such
fixed point can expressed, by the theorem above, as the colimit of the ω-chain:

1 F(1) F(F(1)) F(F(F(1))) · · ·
f0

g0

f1

g1

f2

g2

But, the least solution to this equation is trivial: D∞ ≃ 1, because 1 ≃ 1A 1. A non-trivial
solution is obtained by starting the chain at2, the Scott domain containing just {⊤,⊥}, rather
than 1.

1 F(2) F(F(2)) F(F(F(2))) · · ·
f0

g0

f1

g1

f2

g2

We will now sketch a proof of the retraction pair between D∞ and D∞ A D∞, by providing
two functions, up : D∞ → (D∞ AD∞) and its inverse down : (D∞ AD∞) → D∞.

Observe that each element of Di (for i > 0) is a functionwhose domain is Di−1. Therefore,
an element of D∞ is an ω-tuple of such functions. To define up(d)(x), we must essentially
“apply” each function in the element d ∈ D∞ (viewed as an ω-tuple of functions) to the
element x ∈ D∞ (viewed as an ω-tuple of value). More specifically, we say that up(d)(x) is
an ω-tuple (ym | y ∈ N), as follows:

ym =
⊔
k∈N

θm+k,m(dm+k+1(xm+k))

To define down(f), we are given a (continuous) function f : D∞ A D∞ and must construct
the ω-tuple of approximations at every Dn. We do this by projecting the action of f down to
Dn. We say that down(f) is an ω-tuple (vn | n ∈ N) where:

v0 ≜ θ∞,0(f(θ0,∞(⊥D0)))

vn+1 ≜ θ∞,n ◦ f ◦ θn,∞
4.1 Semantics for untyped λ-calculus

Using the new functions up and down, it is now straightforward to define a semantics for
untyped λ-calculus, where σ is an environment Var→ D∞:

J·K : (Var→ D∞)AD∞
JxKσ = σ(x)
Je0 e1Kσ = up(Je0Kσ)(Je1Kσ)
Jλx. eKσ = down(Λv ∈ D∞. JeK σ(x 7→ v))

This semantics does not distinguish non-terminating computations from terminating ones.
To model call-by-value more faithfully, we could use the equation D ≃ DAD⊥ instead, and
for call-by-name we could use D ≃ D⊥ AD⊥. The constructions are very similar.
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Exercises

1. Show that F(X) ≜ 1 + X and F(f) ≜ id1 + f define a functor F, i.e. that they satisfy the
functor laws.

2. The lazy natural numbers, also called conats, are defined as the least solution to the
equation X ≃ 1 + X, i.e. as the fixed point of F in the previous question. Draw the first
four approximations to the least fixed point. Call the two sum injections zero and succ.

3. Repeat exercise 2 assuming:

a) zero is strict (i.e. zero⊥ = ⊥)

b) succ is strict (i.e. succ⊥ = ⊥)

What types (up to iso) result from these least fixed points?

4. Show that, in contrast to F(X) = XA Z⊥ from earlier, the mapping G(X) = Z⊥ A X can
be extended to continuous functions giving a covariant endofunctor in Cpo.

Glossary

cocontinuous A functor F is cocontinuous iff it preserves colimits of ω-chains . 3, 4, 6, 7

colimit Colimits are a categorical generalisation of the least upper bound. 2–4, 6–10

contravariant A contravariant functorF is a functor that, instead of associating a morphism

X
m−→ Y with a morphismF(X)

F(m)−−−−→ F(Y), it instead gives a morphismF(Y)
F(m)−−−−→ F(X)

. 5, 10

covariant A covariant functor is a functor that is not contravariant. 5, 7, 10

embedding In a retraction pair from A to B, the embedding is the function f : A → B that
retains all information. 5–8, 10

endofunctor An endofunctor on a category C is a functor from C to C. Usually covariant un-
less otherwise specified. 1, 3–7, 10

equirecursive A type system in which a recursive typeµx.τ is considered definitionally equal
to τ[x := µx.τ]. 3

isorecursive A type system in which a recursive type µx.τ is not definitionally equal to τ[x :=
µx.τ], but there is isomorphism consisting of an embedding (usually called unroll) and
a projection (usually called roll) to convert between them . 3

projection In a retraction pair from A to B, the projection is the function g : B → A that may
lose some information. 5–8, 10

retraction pair Also called an embedding-projection pair, consists of two continuous func-
tions f : AA B and g : BAA such that:

1. g ◦ f = idA (i.e. ∀x ∈ A. g(f(x)) = x)

2. f ◦ g ⊑ idB (i.e. ∀y ∈ B. f(g(y)) ⊑ y)

. 5–10
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