
Domain Theory
Part 4: PCF, then Scott Domains

Dr. Liam O’Connor
based on material from

Graham Hutton, John Longley, Robert Muller, Dana Scott, Joseph E. Stoy, Carl Gunter, Glynn Winskel

March 27, 2024

1 Introduction

Previously we saw a formalisation of constructions on the category Cpo, whose objects are
cpos and morphisms are continuous functions between them. These constructions allow
us to give a denotational semantics to a more interesting language, called PCF, a variant of
typed λ-calculus.

Syntax

The syntax of PCF consists of types (τ) and expressions (e), given below. A context, writ-
ten Γ , consists of a sequence of typing judgements for variables:

e ::= n | x | λx : τ. e | e1 e2 | succ | pred | ifz e1 then e2 else e3 | fix x : τ. e
τ ::= nat | τ1 → τ2

The typing rules are given below.

n ∈ N
Γ ⊢ n : nat

x : τ ∈ Γ

Γ ⊢ x : τ

Γ , x : τ1 ⊢ e : τ2

Γ ⊢ λx : τ1. e : τ1 → τ2

Γ ⊢ e1 : τ1 → τ2 Γ ⊢ e2 : τ1

Γ ⊢ e1 e2 : τ2

Γ ⊢ succ : nat → nat Γ ⊢ pred : nat → nat
Γ ⊢ e1 : nat Γ ⊢ e2 : τ Γ ⊢ e3 : τ

Γ ⊢ ifz e1 then e2 else e3 : τ

Γ , x : τ ⊢ e : τ

Γ ⊢ fix x : τ. e : τ

Because PCF is typed, we shall assign denotations only to well-typed expressions. The range
of our denotation function for expressions is determined by the type of its input expres-
sion. That is, the denotation of a type τ is the cpo whose elements are the denotations of
expressions of type τ.

The denotation of the type nat, then, is merely the flat domain (i.e. li�ed cpo) from the
natural numbers N⊥:

JnatK = N⊥

And, the denotation of the function type is the domain of continuous functions on cpos:

Jτ1 → τ2K = Jτ1K A Jτ2K

A closed term e : τ with no free variables simply denotes an element of JτK, so we might be
tempted to define our denotation function for expressions e : τ like so:

JeK : JτK

1

However, if e : τ involves free variables from our context Γ , the valuation of e will clearly de-
pend on the values assigned to all the variables. Thus, the denotation of a typed expression
Γ ⊢ e : τ is defined instead as a continuous function:

JeKΓ : JΓK A JτK

where the meaning of a context Γ = (x1 : τ1, x2 : τ2, . . . , xn : τn) will be a a big product of the
values assigned to each variable:

JΓK = Jτ1K × Jτ2K × · · · × JτnK

The actual definition of our expression semantics is then:

JnKΓ (⃗z) = n

JxKΓ (⃗z) = zj where j is largest j s.t. x = xj
Jλx : τ1. eKΓ (⃗z) = (Λv ∈ Jτ1K. JeKΓ ,x:τ1 (⃗z, v))
Je1 e2KΓ (⃗z) = Je1KΓ (⃗z)(Je2KΓ (⃗z))
JsuccKΓ (⃗z) = (Λv ∈ N⊥. v+ 1)
JpredKΓ (⃗z) = (Λv ∈ N⊥. v− 1)

Jifz e1 then e2 else e3KΓ (⃗z) =

Je2KΓ (⃗z) if Je1KΓ (⃗z) > 0
Je3KΓ (⃗z) if Je1KΓ (⃗z) = 0
⊥ if Je1KΓ (⃗z) = ⊥

Jfix x : τ. eKΓ (⃗z) = fix(Λv ∈ JτK. JeKΓ ,x:τ(⃗z, v))

HereΛx ∈ C. t is notation for an anonymous continuous functionCADbetween cposC and
D. Verifying that these functions are indeed continuous is straightforward, but is necessary
to justify the use of fix.

Are we done?

For most purposes in semantics, describing semantics in terms of (continuous func-
tions on) cpos is enough. The above semantics of PCF is evidence of this: PCF is a Turing-
complete, higher order functional programming language. This semantic approach gen-
eralises to many languages with richer type systems. Thus, just the content we have
covered so far is sufficient to give denotational semantics to many kinds of languages!

If we discard the type system, fix, natural number primitives and any other superfluous fea-
tures, and just boil our language down to a minimal, Turing-complete subset, we end up
with the untyped λ-calculus — a language consisting only of untyped functions:

e ::= x | λx.e | e1 e2

Trying to give a semantics to the untyped λ-calculus poses an issue: we can no longer rely on
the type of an expression to select an appropriate semantic domain. Instead, we we must
pick a single domain D which, since functions can be applied to themselves, must appar-
ently include the set of functions D → D. By a simple cardinality argument, such an in-
clusion cannot hold. Instead, we shall insist on an isomorphism1. between our domain D

and our space of functions (D → D). Even if we restrict D to be a cpo and our functions
to be continuous, D may not admit such an isomorphism. We must further strengthen our
requirement on D, instead requiring that it is a particular type of cpo called a Scott domain.
This lecture will introduce the key concepts behind Scott domains.

1Technically this is a slight weakening called a retraction pair, but we will reach this in the next part of the
course.

2

Later Connections

We will see how to construct such recursively defined domains work in general in the
next part of the course. Scott domains are also necessary to give semantics to non-
deterministic programs through a construction called the power domain, which we will
discuss towards the end of the course.

2 Compactness

We begin by formalising the notion of an element in a cpo representing a finite amount of
information.

Intuition

There are two kinds of directed sets:

• Boring sets contain their lub.
Example: Finite directed sets are boring (but boring sets aren’t all finite!).

• Interesting sets don’t contain their lub.
Example: N in the chain N ∪ {∞} is interesting.

Following the above intuition, we might be tempted to say that the infinite elements of a cpo
are those which are the lub of an interesting set, but this notion is too weak. Consider this
cpo X:

∞
2

1 x

0

⊥

By the above definition, the only infinite element would be ∞, but if we consider the follow-
ing isomorphic cpo, ordered by subset inclusion:

N

{0, 1, 2}

{0, 1} x

{0}

∅

3

Then the set x cannot be a finite set, as any finite set would be a subset of one of the finite
sets in the chain ∅ ⊑ {0} ⊑ {0, 1} ⊑ · · · . Thus, it makes more sense for us to call x an infinite
element as well.

Definition

Let A be a cpo. Then x ∈ A is compact (a.k.a. finite) iff for all directed X ⊆ A:

x ⊑
⊔

X =⇒ ∃y ∈ X. x ⊑ y

In English: A compact element will approximate some element of a directed set if it
approximates the lub. We write K(A) for the set {x ∈ A | x is compact}.

In the example cpo X above, all the elements except ∞ and x would be compact. Thus, com-
pactness better captures our notion of an element representing a finite amount of informa-
tion. This understanding of compact elements is a generalisation of the notion of a finite
element from the theory of algebraic lattices.

Example

• Every element in a finite cpo is compact. More generally, every element of a cpo
of finite height (e.g. Z⊥) is compact. This is because finite directed sets always
contain their lub.

• The cpoP(X) of subsets ofX ordered by inclusion⊆. The compact elements ofP(X)
are those of finite cardinality.

• The cpo N ↛ N of partial functions on the natural numbers, ordered by inclusion
of graphs. The compact elements of N ↛ N are the functions which are defined
only for finite domains.

Examples Contrary to Intuition (Infinite height)

∞+ 1 compact

∞ non-compact

2

1

0

compact

Compact elements may still have an infinite number of ap-
proximations. Consider the cpo N ∪ {∞,∞ + 1}, where we
have tacked on an additional top element ∞+ 1 to our nor-
mal cpo of natural numbers extended with infinity. Then,
while ∞ is not compact, ∞+ 1 is compact — it is not the lub
of an interesting directed set. If ∞ + 1 is the lub of a set X
then ∞ + 1 must be in the set X. Nonetheless, there are an
infinite number of approximations to ∞+ 1, i.e., elements x
such that x ⊑ ∞+ 1.

As an aside, requiring that our compact elements have a
truly finite number of approximations is the basis for the
theory of Berry domains and stable functions (outside the
scope of this course).

Examples Contrary to Intuition (Infinite sets can be compact)

A submonoid of a monoid (X,⊕, ι) is a subset Y ⊆ X such that Y is closed under ⊕ and
ι ∈ Y.

Fact: The submonoids of a X form a cpo under ⊆, where union gives the lub.

4

Contrary to our intuition of compactness meaning finiteness, the infinite set E of even
natural numbers is nonetheless a compact element in the cpo of submonoids of (N,+, 0).
Proof: Let Y ⊆ N be directed and E ⊆

⋃
Y. Since 2 ∈ E there must exist y ∈ Y such that

2 ∈ Y. Since (y,+, 0) is a monoid, E ⊆ y.

However, E is finitely generated – it is the smallest submonoid of (N,+, 0) such that the
finite set {2} ⊆ E. In fact, the compact submonoids of (N,+, 0) are precisely the finitely
generated ones.

3 Algebraicity

In order to achieve our desired domain D ≃ DAD, the cpo we choose must be algebraic.

Definition

A cpo is algebraic iff every element is the lub of its compact approximations. That is, a
cpo D is algebraic iff for all x ∈ D,

1. ↓(x) = {y ∈ K(D) | y ⊑ x} is directed;

2. x =
⊔

↓(x)

Note: It’s common in semantics to consider only algebraic cpos with a countable set of
compact elements. Such cpos are called ω-algebraic.

Aside: Plotkin provides an equivalent definition of ω-algebraic cpos in which directed
sets are replaced with ω-chains throughout. Hutton claims this is less appealing, as the
definition speaks of an ω-chain of compact approximations, rather than the directed
set of such.

Example

Many of the examples we saw above are ω-algebraic cpos: finite cpos, subsets P(X) of
a set X, partial functions N ↛ N and submonoids of a monoid. In general, any cpo of
subalgebras (e.g. subgroups of a group, subrings of a ring etc.) is ω-algebraic. This is
the origin of the terminology.

Counterexample

∞
1 x

0

⊥

In the cpo on the right (the same as the one we saw previ-
ously), the element x is not the lub of its compact approx-
imations. The only compact element that approximates
x is ⊥, and the least upper bound of the set {⊥} is just ⊥,
not x. That is:

↓(x) = {⊥}

but:
x ̸=

⊔
{⊥}

5

3.1 Continuous functions on Algebraic Cpos

Nothing Suddenly Invented at Infinity

Let D and E be algebraic cpos. Then a function f : D → E is continuous iff, for all x ∈ D:

f(x) =
⊔

{f(a) | a ∈ ↓(x)}

In other words, in an algebraic cpo, continuous functions are completely defined by
their behaviour for compact arguments.

This makes precise our earlier slogan that continuous functions don’t suddenly behave
differently for infinite (i.e. non-compact) elements.

Theorem

Let d : DA E be a continuous function between algebraic cpos. Define:

Gf = {(a,b) ∈ K(D)× K(E) | b ⊑ f(a)}

Then for all x ∈ D, we have:

f(x) =
⊔

{b | (a,b) ∈ Gf ∧ a ⊑ x}

This is powerful. For example, the continuous function f : P(N)A P(N) on an uncount-
able cpo P(N) is completely determined by the countable relation Gf.

Proof:
f(x) = f(

⊔
↓(x)) (D is algebraic)

=
⊔

{f(a) | a ∈ ↓(x)} (f is continuous)
=

⊔
{
⊔

↓(f(a)) | a ∈ ↓(x)} (E is algebraic)
=

⊔
{b ∈ K(E) | b ⊑ f(a)∧ a ∈ ↓(x)} (lubs and defn of ↓)

=
⊔

{b | (a,b) ∈ Gf ∧ a ⊑ x} (defn of Gf)

3.2 A Representation Theorem for Algebraic Cpos

Definition

An ideal is a downwards-closed directed set. The ideal completion of a set A, written
sometimes as Id(A), is the set of all ideal subsets of A, i.e.:

Id(A) = {X ⊆ A | X is ideal}

Theorem: Every algebraic cpo D is isomorphic to the ideal completion of its compact ele-
ments, i.e.:

Id(K(D)) = {X ⊆ K(D) | X is ideal} is an algebraic cpo such that D ≃ Id(K(D))

Proof omitted.

3.3 Closure Properties

If D and E are algebraic cpos, then so is their product construction D × E. The following
definition is useful for the proof:

6

Definition

A set X ⊆ K(A) is a basis for a cpo A iff for all x ∈ A, x =
⊔
{a ∈ X | a ⊑ x}.

If X is a basis for A, then A is algebraic and K(A) = X.
Proof: If a ∈ K(A), then

⊔
M = a where M = {x ∈ X | x ⊑ a}, as X is a basis. Since

a is compact, a ⊑ b for some b ∈ M. But since a is the lub of M, b ⊑ a as well. By
antisymmetry a = b, hence a ∈ X. Thus K(A) ⊆ X, so K(A) = X and A is algebraic.

In the following proof, we show that K(D)×K(E) is a basis for the product D×E and thereby
show that D× E is algebraic if D and E are.

Part 1: K(D)× K(E) ⊆ K(D× E)

Let (x,y) ∈ K(D)×K(E). To show that (x,y) is compact, let us assume that (x,y) ∈
⊔
X where

X ⊆ D × E is directed. We must show that there exists some element e of X such that our
(x,y) ⊑ e. As (x,y) ∈

⊔
X, by the definition of lub on products we can conclude that2:

x ⊑
⊔
π0[X]

y ⊑
⊔
π1[X]

Since x and y are both compact, there must exist x ′ ∈ π0[X] and y ′ ∈ π1[X] such that x ⊑ x ′

and y ⊑ y ′. While it does not follow that (x ′,y ′) ∈ X, we know that there must exist a pair
(a,b) ∈ X such that x ′ ⊑ a and y ′ ⊑ b as X is directed. Hence (a,b) can be our element e ∈ X

that is approximated by (x,y), i.e. (x,y) ⊑ (a,b).

Part 2: ↓(x,y) is directed for all (x,y) ∈ D× E

↓(x,y) = {(a,b) ∈ K(D)× K(E) | (a,b) ⊑ (x,y)}
= {a ∈ K(D) | a ⊑ x}× {b ∈ K(E) | b ⊑ y}

= ↓(x)× ↓(y)
Because D and E are algebraic, ↓ (x) and ↓ (y) are directed. As directedness is closed under
product, ↓(x,y) is directed too.

Part 3: (x,y) =
⊔

↓(x,y)

Starting from the right hand side:⊔
↓(x,y) =

⊔
(↓(x)× ↓(y)) (part 2)

= (
⊔
(↓(x),

⊔
↓(y))) (lub on products)

= (x,y) (D, E are algebraic)

Problem

ω-algebraic cpos are closed under all of our cpo constructions except A and ◦A!

4 Consistent Completeness

The lack of closure under the (continuous) function arrow, strict or non-strict, is not satis-
fying as it means that our semantic domains are not guaranteed to be algebraic even if they
are composed from algebraic cpos. Instead, we must replace algebraic cpos with something
stronger still. Multiple solutions exist.

2Here we use the notation f[X] to indicate the image of a function on a set, i.e. {f(v) | v ∈ X}.

7

Original Solution

Scott’s original solution to this lack of closure was to use complete lattices instead of
cpos, i.e. requiring lubs for all subsets, not just directed ones. This solves the problem
with A but introduces new problems:

1. Complete lattices need a top element ⊤, but adding a fictitious top (representing
inconsistent information) to cpos like B⊥ is strange.

2. Extending the functions that capture our primitive semantic operations to com-
plete lattices can spoil nice algebraic properties. Consider these two possible im-
plementations of ite, the function for the semantics of an if expression:

ite(⊤, x,y) = x ⊔ y ite(⊤, x,y) = ⊤

Either of these solutions results in the failure of useful and expected laws for if ex-
pressions. For example, the le� definition above results in the failure of the com-
mon equation to eliminate unreachable cases:

ite(b, ite(b, x,y), z) = ite(b, x, z)

3. The power domain construction, seen later in the course, does not generalise to
complete lattices, so semantics for non-deterministic programs are difficult in
this setting.

4.1 The Real Solution

Definition

A poset A is consistent complete (or bounded complete) iff
⊔
X exists for all consistent

X ⊆ A. That is, any set with an upper bound (a consistent set) has a least upper bound.

Example

2

1

0

• •

• •

•

consistent complete not consistent complete
not directed complete directed complete

By adding the requirement that our cpo be consistent complete, we can ensure that our
semantic domains are closed under all our cpo constructions, including A and ◦A

8

5 Scott Domains

Definition

A cpo D is a Scott domain iff:

1. D is ω-algebraic

2. D is consistent complete

In other words, Scott domains can be summed up by the
acronym:

ac3po

ω-algebraic consistent-complete complete partial order

The second requirement in the definition above can, in light of the first, be expressed equiv-
alently as: x⊔ y exists for all consistent x,y ∈ D. This is useful when needing to show that a
given cpo is a Scott domain.

Scott domains are closed under all our cpo constructions, including A and ◦A.

Thesis
Our semantic domains are Scott domains.

Glossary

ω-algebraic An algebraic cpo where the compact elements are countable.. 5, 7, 9, 10

algebraic A cpo is algebraic iff every element is the lub of its compact approximations. That
is, a cpo D is algebraic iff for all x ∈ D,

1. ↓(x) = {y ∈ K(D) | y ⊑ x} is directed;

2. x =
⊔

↓(x)
. 5–7, 9

basis A set X ⊆ K(A) is a basis for a cpo A iff for all x ∈ A, x =
⊔
{a ∈ X | a ⊑ x}. 7, 9

closed term A term, or expression, with no free variables. 1

compact An element x in a cpo A is compact (a.k.a. finite) iff for all directed X ⊆ A, x ⊑⊔
X =⇒ ∃y ∈ X. x ⊑ y. That is, if a compact element approximates the lub of a

directed set, it will approximate an element of that set. . 4–7, 9

complete lattice A complete lattice is the same as a cpo, except all sets have a least upper
bound, not just the directed ones. . 8

9

consistent A subset X of a poset A is consistent iff it has an upper bound. An upper bound of
a set Y is some x such that ∀y ∈ Y.y ⊑ x . 8–10

consistent complete A poset A is consistent complete (or bounded complete) iff
⊔
X exists

for all consistent X ⊆ A. That is, any set with an upper bound (a consistent set) has a
least upper bound. 8–10

context A finite sequence of typing assumptions for each variable in scope x0 : τ0, x1 : τ1, x2 :
τ2, . . . , xn : τn. O�en a context is written as Γ . 1, 2, 10

downwards-closed A set X is downwards-closed if {y | y ⊑ x∧ x ∈ X} = X. 6, 10

free variables A variable is free in an expression e if it is not bound (introduced) within e. For
example, in the untyped λ-calculus expression λx. x y, y is free and x is not. . 1, 2, 9

ideal A downwards-closed directed set. 6, 10

ideal completion The set of all ideal subsets of A, o�en written Id(A), i.e. Id(A) = {X ⊆ A |

X is ideal} . 6

PCF A Turing-complete variant of the typed λ-calculus. 1, 2

Scott domain An ω-algebraic, consistent complete cpo. 2, 3, 9

typed λ-calculus The typed lambda calculus is a programming language developed first by
Alonzo Church, which associates types to each variable and expression.. 1, 10

typing rules Inference rules for the judgements Γ ⊢ e : τ, which states that, under the typing
context Γ , the expression e has type τ. . 1

untyped λ-calculus The untyped lambda calculus is a very minimal Turing-complete pro-
gramming language invented by Alonzo Church, consisting only of function abstrac-
tions (λx.e), function applications (e1 e2) and variables. . 2, 10

10

	Introduction
	Compactness
	Algebraicity
	Continuous functions on algebraic Cpos
	A Representation Theorem for algebraic Cpos
	Closure Properties

	Consistent Completeness
	The Real Solution

	Scott Domains

