
Domain Theory
Part 3: Constructions on Cpos

Dr. Liam O’Connor
based on material from

Graham Hutton, Dana Scott, Joseph E. Stoy, Carl Gunter, Glynn Winskel

March 11, 2024

1 Introduction

In the last lecture, we were introduced to the theory of complete partial orders, or cpos,
which are the mathematical structure that underlies all of our semantic domains.

However, our semantic domains are not just flat domains like Z⊥, we also make many
constructions on our domains, such as the cartesian product or disjoint union, or (continu-
ous) functions between domains. In previous lectures, we glossed over the assumption that
these constructions are themselves cpos. In this lecture, we will formalise these three con-
structions and give an overview of their properties, sneaking in some basic category theory
along the way.

2 Products

Recall we previously showed that if A and B are posets, then

A× B ≜ {(a,b) | a ∈ A∧ b ∈ B}

is a poset under the ordering:

(a,b) ⊑A×B (a ′,b ′) iff a ⊑A a ′ ∧ b ⊑B b ′

It also has a bottom value if A and B do:

⊥A×B = (⊥A,⊥B)

In an exercise you may also have shown that A × B is also a cpo if A and B are cpos, with
definition for lubs: ⊔

X =
(⊔

{x | ∃y. (x,y) ∈ X},
⊔

{y | ∃x. (x,y) ∈ X}
)

This definition can be made a little more comprehensible by defining the two projection
operators for pairs:

π0 : A× B → A π1 : A× B → B

π0(x,y) = x π1(x,y) = y

⊔
X = (

⊔
{π0(x) | x ∈ X},

⊔
{π1(x) | x ∈ X})

π1 π2

1

Destructing pairs is captured by these projection functions, and construction of pairs is cap-
tured by the split function: If f : A → B and B → C, then split, written ⟨f,g⟩, is defined as:

⟨f,g⟩ : A → B× C

⟨f,g⟩ a = (f(a),g(a))

f

g

Continuity

Theorem: π0 and π1 are continuous. Proof is straightforward and omitted.

Theorem: Assuming f and g are continuous, ⟨f,g⟩ is continuous. Proof in two parts:

• ⟨f,g⟩ is monotonic. Let x ⊑ y ∈ A. Then:

⟨f,g⟩ x = (f(x),g(x)) (def)
⊑ (f(y),g(y)) (monotonicity of f,g)
= ⟨f,g⟩ y (def)

• ⟨f,g⟩ preserves lubs of directed sets. Let X ⊆ A be directed. Then:

⟨f,g⟩ (
⊔
X) = (f(

⊔
X),g(

⊔
X)) (def)

= (
⊔
{f(x) | x ∈ X},

⊔
{g(x) | x ∈ X}) (continuity of f,g)

=
⊔
{⟨f,g⟩ x | x ∈ X} (def)

These three “primitive” functions are sufficient to derive other functions on products. It is
easy to see the correctness of these functions by thinking in terms of pictures.

swap : A× B → B×A

swap = ⟨π1,π0⟩

Given f : A → C and g : B → D, we overload the × operator to denote the combined function
f× g : A× B → C×D, given below:

f

g

f

g

f× g : A× B → C×D

f× g = ⟨f ◦ π0,g ◦ π1⟩

2

2.1 Universality

h

h

h=⟨π0 ◦ h,π1 ◦ h⟩ = h

f

g

g=π1 ◦ ⟨f,g⟩ = g

f

g

f=π0 ◦ ⟨f,g⟩ = f

These properties are together equivalent to the universal property for products:

(π0 ◦ h = f∧ π1 ◦ h = g) iff h = ⟨f,g⟩

The universal property is easy to remember as a commuting diagram on the category Cpo:

A

B B× C C

f g
⟨f,g⟩

π0 π1

Categories

A category C consists of a collection of things (objects) and a collection of arrows be-
tween these things (morphisms). If there is a morphism A

f−→ B and a morphism B
g−→ C,

we also have the composed morphism A
g◦f−−→ C. This composition operator must be

associative. Additionally each object X has an identity morphism X
idX−−→ X, such that for

an arrow X
a−→ Y, a ◦ idX = idY ◦ a = a. Some examples of categories include:

• Set, where objects are sets, morphisms are functions between these sets, compo-
sition is function composition ((g ◦ f)(x) ≜ g(f(x))) and identity is just λx.x.

• Rel, where objects are sets, morphisms are relations between these sets, composi-
tion is relational composition (g◦ f ≜ {(a,b) | ∃i. (a, i) ∈ f∧ (i,b) ∈ g}) and identity
is the diagonal relation (equality).

3

• Cpo, where objects are cpos, morphisms are continuous functions between these
cpos. Function compositions preserve continuity (proof below), and identity func-
tions are continuous.

• Cat, where objects are themselves categories, and the morphisms are functors:
structure preserving maps between categories. A functor from a category C to a
category D is a total function F that maps objects of C to objects of D, and arrows
of C to arrows of D such that:

– For each A
m−→ B in C, we have a morphism F(A)

F(m)−−−→ F(B) in D.

– For each object A in C, the equation F(idA) = idF(A) holds in D.

– For a pair of morphism A
f−→ B

g−→ C in C, the equation F(g ◦ f) = F(g) ◦ F(f)
holds in D.

When working in a category, we can state many theorems compactly using commuta-
tive diagrams, as above. In these diagrams, the objects are vertices in the diagram, and
the morphisms are the arrows in the diagram (we typically omit identity morphisms).
Looking at the above diagram, we can equate the two paths from A to B and the two
paths from A to C, and produce the equations above.

This universal property is called such because all the familiar properties of products follow
from it (thinking in pictures helps to see how)1:

1. π0 ◦ (f× g) = f ◦ π0

2. π1 ◦ (f× g) = g ◦ π1

3. (f× g) ◦ ⟨h, i⟩ = ⟨f ◦ h,g ◦ i⟩

4. ⟨f,g⟩ ◦ h = ⟨f ◦ h,g ◦ h⟩

5. idA × idB = idA×B (∗)

6. (f ◦ g)× (h ◦ i) = (f ◦ h)× (g ◦ i) (∗∗)

These last two statements (∗) and (∗∗) show that × is a bifunctor on the category Cpo, i.e. a
functor Cpo× Cpo→ Cpo.

2.2 Isomorphisms

Definition

Recall an isomorphism between sets consists of a total function f : X → Y and an inverse
f−1 : Y → X such that:

f−1 ◦ f = idX and f ◦ f−1 = idY

Two sets X, Y are isomorphic (written X ≃ Y) iff an isomorphism exists between them.

Cpos form a commutative monoid “up to isomorphism” under × and 1 (the cpo consisting of
only one element ⊥). That is, for all cpos A,B and C:

• A× 1 ≃ A

• A× (B× C) ≃ (A× B)× C

1Indeed, the universal property characterises products up to isomorphism.

4

• A× B ≃ B×A

Let AA B denote just the continuous functions from cpo A to cpo B:

AA B ≜ {f : A → B | f is continuous}

Another isomorphism we get is between pairs of continuous functions and continuous func-
tions that output pairs:

(AA B)× (AA C) ≃ (AA (B× C))

Proof follows from the universal property a�er setting up the isomorphism with functions
f(g0,g1) = ⟨g0,g1⟩ and f−1(h) = (π0 ◦ h,π1 ◦ h).

Because we have the functor × on cpos that satisfies the properties of products described
above, the category Cpo therefore has binary products.

3 Functions

In the previous lecture, specifically in the factorial example, we already implicitly assumed
that the space of continuous functions on cpos AA B is itself a cpo. In this section, we will
formalise this construction.

As previously stated, AA B denotes continuous functions from A to B:

AA B ≜ {f : A → B | f is continuous}

If A and B are cpos, the set AA B is a cpo under the pointwise ordering:

f ⊑ g iff ∀a ∈ A. f(a) ⊑ g(a)

The intuition of this ordering in terms of information is that we increase the information
content of a function overall by increasing the information content of any (or many) argu-
ment values. To prove this, we must show:

1. AAB has a least element. ⊥A A B is the constant function that returns ⊥B, i.e. λa. ⊥B.

2.
⊔
X exists for all directed X ⊆ AA B. Our lub operator

⊔
X can be just:

Φ(a) =
⊔

{f(a) | f ∈ X}

a)
⊔
{f(a) | f ∈ X} exists in B. We want to show that the set {f(a) | f ∈ X} is directed.

Take two values g(a),h(a) ∈ {f(a) | f ∈ X}. Since X is directed, there exists a
function k ∈ X such that g ⊑ k and h ⊑ k. By applying the definition of ⊑ for
functions above, we have g(a) ⊑ k(a) and h(a) ⊑ k(a). Thus k(a) is an upper
bound of these two values g(a),h(a), and thus {f(a) | f ∈ X} is directed, and thus
its lub exists since B is a cpo.

b) Φ(a) =
⊔
{f(a) | f ∈ X}} is continuous.

Φ(
⊔
Y) =

⊔
{f(

⊔
Y) | f ∈ X} (defn. Φ)

=
⊔
{
⊔
{f(y) | y ∈ Y} | f ∈ X} (f is continuous)

=
⊔
{
⊔
{f(y) | f ∈ X} | y ∈ Y} (swap lubs)

=
⊔
{Φ(y) | y ∈ Y} (defn. Φ)

Monotonicity is similar to prove.

5

c) Φ is an upper bound for X ⊆ A A B. Let g ∈ X. Then for any a ∈ A we have
g(a) ∈ {f(a) | f ∈ X}. Now, by 2a) and lubs, we have g(a) ⊑

⊔
{f(a) | f ∈ X}, which by

the definition of Φ gives g(a) ⊑ Φ(a). Hence, by the definition of ⊑ on functions,
we can conclude g ⊑ Φ.

d) Φ is the least upper bound for X. Let g ∈ AA B be an upper bound for X ⊆ AA B.
Then (using ⊑ on functions) g(a) is an upper bound for {f(a) | f ∈ X} for all a ∈ A.
Now, by 2a) and lubs, we have

⊔
{f(a) | f ∈ X} ⊑ g(a), i.e. Φ(a) ⊑ g(a), which, by

the definition of ⊑ on functions, allows us to conclude Φ ⊑ g.

Example (on B⊥→ B⊥)

••

•

••

•

••

•

••

•

••

•

••

•

••

•

••

•

••

•

••

•

••

•

At each step “upwards” on this cpo, one arrow that ends in ⊥ now points to a non-⊥
value (moving up the cpo B⊥).

3.1 Primitive functions for functions

We will now introduce the primitive functions for functions. We have apply, the function
that applies a given function to a given argument:

apply : ((AA B)×A)A B

apply(f,a) = f(a)

And we have the function curry, which transforms a function that takes two arguments all
at once (as a product) into a function that takes the arguments one at a time. That is, if
f : A× BA C then:

curry(f) : AA (BA C)
curry(f)(a)(b) = f(a,b)

6

Note: As can be seen from the use of the A symbol, these functions are both continuous
assuming their argument functions are continuous. Proof of this is omitted.

3.2 Universal property for functions

A× B C

(BA C)× B

curry(f)×idB

f

apply

This universal property establishes an important isomorphism:

(A× B)A C ≃ AA (BA C)

3.2.1 Functor of functions

The operator A we have introduced so far is the object mapping for a binary functor:

(A) : Cpoop × Cpo→ Cpo

The category Cpoop is the dual category to Cpo.

Duality

The dual of a category C, written Cop, is a category with the same objects as C but the
arrows are reversed, that is, for each morphismA

m−→ B inC, there is a morphismB
m−→ A

in Cop.

Thus, a morphism A
m−→ B in the category Cpoop is a continuous function m : BA A. Thus,

the morphism mapping for our functor must take two functions f : B A A (the morphism
from Cpoop) and g : C A D (the morphism from Cpo), and produce (A A C) A(B A D). As
with products, we will overload the A notation for this mapping as well. Given f : BAA and
g : CAD, we have:

fAg : (AA C)A(BAD)
fAg = curry(g ◦ apply ◦ (id× f))

(or, operationally:)
(fAg)(h) = g ◦ h ◦ f

The two functor laws follow as a consequence of the universal property for functions above:

1. idAAidB = idA A B

2. (f ◦ g)A(h ◦ i) = (gAh) ◦ (fAi)

Thus, our category Cpo has exponentials.

7

4 Sums

We shall define a sum construct A + B, denoting a disjoint union of two cpos with a new,
dedicated ⊥ value:

A+ B = {(0,a) | a ∈ A} ∪ {(1,b) | b ∈ B} ∪ {⊥A+B}

This construct is a cpo under the ordering:

x ⊑ y iff

true if x = ⊥A+B

a ⊑ a ′ if x = (0,a) and y = (0,a ′)

b ⊑ b ′ if x = (1,b) and y = (1,b ′)

false otherwise

Intuitively, this says that the ordering on A + B is the same as A and B separately, except
that ⊥A+B is less than anything.

4.1 Primitive Functions on Sums

For constructing sums, we use two primitive constructor functions, inl and inr:

inl : AA (A+ B)
inl(x) = (0, x)

inr : BA (A+ B)
inr(y) = (1,y)

For destructing sums, we use the case function [f,g] : (A + B) A C, made from functions
f : AAC and g : BAC. This function is defined by:

[f,g] : (A+ B)A C

[f,g](x) =

f(a) if x = (0,a)
g(b) if x = (1,b)
⊥C if x = ⊥A+B

With these, we can define the morphism mapping for the sum bifunctor (+) : Cpo× Cpo →
Cpo. Just as with products and functions, we will overload the + notation. Given functions
f : AA C and g : BAD, we have:

f+ g : (A+ B)A (C+D)
f+ g = [inl ◦ f, inr ◦ g]

4.2 Weak Universal Properties

We have theorems [f,g] ◦ inl = f and [f,g] ◦ inr = g, i.e.:

C

A A+ B B

f g
[f,g]

inl inr

8

Note that this diagram is the dual of the product diagram above. That is because sums are
dual to products. However, because of our additional ⊥ value, our sums are only weakly
universal. For example, consider this scenario with the cpos 2 = {⊤,⊥} and 1 = {⊥}:

2

1 1+ 1 1

λx. ⊤ λx. ⊤
h

inl inr

In this case, setting the function h = λx. ⊤ makes the diagram commute, but (λx. ⊤) ̸=
[λx. ⊤, λx. ⊤] due to the different handling of ⊥1+1. Thus we have only a weak universal prop-
erty:

(h ◦ inl = f∧ h ◦ inr = g) iff [f,g] ⊑ h

This also means that we don’t have a lot of our expected isomorphisms, e.g:

1. A+ (B+ C) ̸≃ (A+ B) + C

2. (AA C)× (BA C) ̸≃ (A+ B)AC

So, our category Cpo has only local sums.

5 Strict Constructions

When giving a semantics to a call-by-name language, the constructions A, × and + are ex-
actly what we want. To properly capture call-by-value languages or strict language con-
structs, however, we also need strict versions of these constructions.

Definitions

Given cpos A and B, then the following are all cpos, with evident orderings:

• A ◦A B = {f ∈ AA B | f(⊥) = ⊥}

• A⊗ B = {(a,b) ∈ A× B | a ̸= ⊥∧ b ̸= ⊥} ∪ {⊥A⊗B}

• A⊕ B = {(t, x) ∈ A+ B | x ̸= ⊥} ∪ {⊥A⊕B}

The operators ⊗ and ⊕ are o�en called “smash” product and sum, because the two ⊥
values are “smashed” together into one ⊥ value.

The strict cpo constructions satisfy all the usual isomorphisms, including:

• (A ◦A B)× (A ◦A C) ≃ A ◦A (B⊗ C)

• (A⊗ B ◦A C) ≃ A ◦A (B ◦A C)

• (A ◦A C)× (B ◦A C) ≃ (A⊕ B) ◦A C

Fact

The category Cpo⊥ of cpos and strict continuous functions between them has products,
exponentials and sums.

9

The li�ing operator (·)⊥, which we have seen before when applied to flat domains, adds a
new ⊥ value to a cpo. With this operator, we can relate the lazy and strict constructions we
have introduced today via isomorphism:

• AA B ≃ A⊥ ◦A B

• A+ B ≃ A⊥ ⊕ B⊥

• (A× B)⊥ ≃ A⊥ ⊗ B⊥

Exercises

1. Show using the universal property that ⟨f,g⟩ ◦ h = ⟨f ◦ h,g ◦ h⟩.

2. In the style of my diagram on page 6, draw the cpo 3 A 3, where 3 is the cpo {0, 1, 2}
ordered by ⩽.

3. Express the function juggle(a, (b, c)) = ((a,b), c) using just our primitive combinators.

4. What is the common (functional programming) name for apply ◦ (f× id)?

5. Show that apply is continuous.
Hint: A function f : A × B → C is continuous iff it is continuous in each argument
separately, i.e., iff ∀a ∈ A. f(a, ·) : B → C is continuous, and ∀b ∈ B. f(·,b) : A → C is
continuous.

Glossary

bifunctor A binary functor, i.e. a functor from two categories to one. Equivalently, a bifunc-
tor is a functor from the product category C× C. 4, 8

call-by-name A call-by-name programming language is a language which does not evalu-
ate function arguments before evaluating the function body. Notably, this means that
functions may not be strict, i.e. f(⊥) may not be ⊥ . 9

call-by-value A call-by-value programming language is a language which evaluates all func-
tion arguments before evaluating a function body. Notably, this means that semanti-
cally all functions are strict, i.e. f(⊥) = ⊥. 9

category A mathematical structure that resembles a (multi-)graph consisting of a class of
objects, a class of arrows or morphisms between objects, an associative arrow compo-
sition operator and an identity morphism for each object. 1, 3–5, 7, 10, 11

commutative A monoid is commutative if its associative operation also satisfies commuta-
tivity, i.e. a • b = b • a . 4

composition In a category, the composition f ◦g is an arrow A
f◦g−−→ C made from the arrows

B
f−→ C and A

g−→ B. This operator must be associative. 3, 10

dual The dual of a category C, written Cop, is a category with the same objects as C but the
arrows are reversed, that is, for each morphism A

m−→ B in C, there is a morphism
B

m−→ A in Cop . 7, 9, 11

exponential Exponentials are the category-theoretic generalisation of functions. 7

10

functor A functor is a structure-preserving map between categories. Specifically, a functor
from a category C to a category D is a total function F that maps objects of C to objects
of D, and arrows of C to arrows of D such that:

• For each A
m−→ B in C, we have a morphism F(A)

F(m)−−−→ F(B) in D.

• For each object A in C, the equation F(idA) = idF(A) holds in D.

• For a pair of morphism A
f−→ B

g−→ C in C, the equation F(g ◦ f) = F(g) ◦ F(f) holds
in D.

. 4, 5, 7, 10, 11

identity In a category, an identity morphism idX is associated with each object X such that,
for an arrow X

f−→ Y, f ◦ idX = idY ◦ f = f. 3, 4, 10

isomorphism An isomorphism between sets consists of a total function f : X → Y and an
inverse f−1 : Y → X such that:

f−1 ◦ f = idX and f ◦ f−1 = idY

Two sets X, Y are isomorphic (written X ≃ Y) iff an isomorphism exists between them
. 4, 5, 7, 9–11

monoid A monoid (S, •, ι) is an algebraic structure consisting of a set S and an associative
operation • such that for all x ∈ S, x • ι = ι • x = x . 4, 10

sum The dual to products, also called coproducts. A sum can be thought of as the category-
theoretic generalisation of a disjoint union . 8, 9

universal property Also known as the unique extension property, the universal property of a
particular construction fully characterises the construction up to isomorphism. This
means that, once we have the universal property, we can “forget” the exact “imple-
mentation” of our construction and reason purely abstractly instead. 3–5, 7, 9, 10

11

	Introduction
	Products
	Universality
	Isomorphisms

	Functions
	Primitive functions for functions
	uep for functions
	functor of functions

	Sums
	Primitive Functions on Sums
	Weak Universal Properties

	Strict Constructions

