
Domain Theory
Part 2: Recursively Defined Programs

Dr. Liam O’Connor
based on material from

Graham Hutton, Dana Scott, Joseph E. Stoy, Carl Gunter, Glynn Winskel

March 6, 2024

1 Introduction

In the last lecture, we proposed modelling the semantics of programs by monotonic func-
tions on pointed posets, and suggested that this would allow us to give a semantics to re-
cursive programs.

In this lecture, we will refine our understanding of recursive programs to be more precise,
which will show our existing formulation insufficient: our posets must not just be pointed
but also complete (i.e. a cpo), and our functions must not just be monotonic but instead
continuous.

2 Fixed Points

Consider our recursive while loop semantics attempt again:

Jwhile b do c odKC σ =

{
Jwhile b do c odKC (JcKC σ) if JbKB σ = T

σ otherwise

How do we ensure that solutions exist for such recursive equations? And, if multiple solu-
tions exist, how do we decide which one to pick? To address these questions, let’s factor out
everything in our definition except the recursion into a separate (higher-order) function:

Jwhile b do c odKC = f(Jwhile b do c odKC)

where f(X) σ ≜

{
X (JcKC σ) if JbKB σ = T

σ otherwise

Looking at it this way, we can see that any solution to this equation must be an element
of our semantic domain X ∈ C such that f(X) = X. In other words, the problem of finding
solutions to our recursive equations can be cast as the problem of finding fixed points for
non-recursive higher-order functions.

Problems

1. Not all monotonic functions on posets have fixed points!

2. Some monotonic functions on posets have multiple fixed points! Which should we
choose?

1



So, monotonicity and posets are not enough. Intuitively, recursive programs are executed by
“unfolding” as much as necessary to get a result. We would like to characterise our domains
to ensure that solutions always exist, and to allow us to pick the solutions that are “minimal”
in the sense that they rely on a minimal amount of unfolding.

3 Chains and Directed Sets

Let us imagine the ascending Kleene chain of our function f1:

⊥ ⊑ f(⊥) ⊑ f(f(⊥)) ⊑ f(f(f(⊥))) ⊑ · · ·

We know this chain exists as ⊥ ⊑ f(⊥) (as ⊥ is the bottom element), and applying mono-
tonicity repeatedly gives us all the other links in the chain. Intuitively, the fixed point we
are looking for ought to be the limit of this chain, i.e. f(f(f(f(f(f(. . . )))))). First, let us define
chains and directed sets. Then we will discuss the properties our posets and functions must
satisfy to ensure such limits exist, and that they correspond to fixed points.

Chains

A chain in a poset X is a totally ordered subset of X. That is, a subset Y ⊆ X is a chain iff

∀x,y ∈ Y. x ⊑ y∨ y ⊑ x

In domain theory, we usually only care about chains with a countable number of ele-
ments, also known asω-chains. Suchω-chains can be expressed as an infinite sequence
of elements x1 ⊑ x2 ⊑ x3 ⊑ · · · . The ascending Kleene chain above is an example of an
ω-chain.

3.1 Directed Sets

While chains are technically sufficient for our purposes here, later on it will be convenient
to talk instead about directed sets, which can be intuitively described as sets that are “going
somewhere” — given two elements we can always find a “greater” one in the set. Formally,
A non-empty subset Y ⊆ X of a poset X is directed iff:

∀x,y ∈ Y. ∃z ∈ Y. x ⊑ z∧ y ⊑ z

⇒
∃z

•
x

•
y

•
x

•
y

•z

This z is an upper bound of x andy. Hence, a non-empty set is directed iff every pair of values
has an upper bound in the set.

1where ⊥ : C here refers to the constant function that just returns ⊥ : Σ⊥.

2



Example

• The power set P(X) of any X is directed under ⊆.

Right: P({1, 2, 3})

• Any non-empty chain is directed.

{1, 2, 3}

{1, 2} {1, 3} {2, 3}

{1} {2} {3}

∅

3.1.1 An Equivalent Definition

A subset Y ⊆ X of a poset X is consistent iff

∃x ∈ X. ∀y ∈ Y. y ⊑ x

Such an x is called an upper bound of Y.

• •

•
a non-consistent set

• •

• •

•
a consistent set

upper bounds

Alternative Definition of Directedness

A subset Y ⊆ X of a poset X is directed iff every finite subset of Y ′ ⊆ Y has an upper
bound in Y. Briefly sketching the equivalence to our previous definition:

• New =⇒ Old: Every pair of elements x and y has an upper bound as we can just
take an upper bound of the set x,y.

• Old =⇒ New: Given a finite set X = {x1, x2, . . . , xn}, we can show it has an upper
bound by an inductive process, first taking an upper bound of x1 and x2, and then
an upper bound of that and x3, and so on until we have an upper bound for the
whole set. This induction works because the set X is finite.

A corollary of this is that a finite set S is directed iff it has a top element ⊤, i.e. ∀x ∈ S. x ⊑ ⊤.

4 Least Upper Bounds

Let X ⊆ Y be a subset of a poset Y. An element y ∈ Y is a least upper bound (lub) for X iff:

1. it is an upper bound: ∀x ∈ X. x ⊑ y

2. that is less than any other upper bound: ∀y ′ ∈ Y. (∀x ∈ X. x ⊑ y ′) ⇒ y ⊑ y ′

It follows from this definition that the lub is unique if it exists.

3



Notation

We write the lub of a set X as
⊔
X, and usually write x ⊔ y as a shorthand for

⊔
{x,y}.

If all binary lubs exist, then this binary ⊔ operator is idempotent, symmetric, and asso-
ciative, and x ⊑ y iff x ⊔ y = y.

When the poset Y in question is ordered by our information ordering ⊑, the intuition of the
lub

⊔
X is that it combines all of the information content of all elements of X, but it does not

add any additional information (hence least).

Example (in B⊥× B⊥)

• (⊥, F) ⊔ (T ,⊥) = (T , F)

• (⊥, F) ⊔ (⊥,⊥) = (⊥, F)

• (⊥, F) ⊔ (T , T) does not exist

Our poset Y is pointed with a bottom element iff
⊔
∅ exists, as the lub of an empty set is just

the least element in the poset, i.e.
⊔
∅ = ⊥.

5 Complete Partial Orders

A complete partial order (i.e. cpo) (more specifically a dcpo or directed complete partial or-
der) is a poset where lubs exist for the empty set and for all directed subsets. That is, a cpo
is poset A such that:

1. A has a bottom element, i.e. ⊥ ∈ A, and

2.
⊔
X exists for all directed X ⊆ A.

If our intuition for directed sets was that they were “going somewhere”, then in a cpo the
sets “get there” in the sense that the final destination,

⊔
X, exists in the poset (although it

need not be in X itself).

Other Kinds of Completeness

Instead of directed completeness, we may consider chain completeness instead, where
our second requirement instead states that

⊔
X exists for all chains X ⊆ A. These for-

mulations are equivalent, however the proof is non-trivial. If I can find a nice one, I will
provide a link to a proof somewhere on the course webpage.

If we further weaken this requirement to ω-chain completeness, which only requires
that lubs exist for countable ω-chains, we get what is called an ω-cpo. Directed com-
pleteness implies ω-chain completeness (so, all dcpos are ω-cpos) but not vice versa.

We could work only with chain or even ω-chain completeness, and it would be tech-
nically sufficient, however working with directed completeness simplifies some of the
properties we will discuss later in the course, so we will stick with dcpos for now.

Examples and Counterexamples

• Any pointed finite poset is a cpo.

• (P(S),⊆) is a cpo: the lub is just the union.

• (N,⩽) is not a cpo, the ω-chain 1 ⩽ 2 ⩽ 3 ⩽ · · · has no lub.

4



• (N ∪ {∞},⩽) is a cpo, as ∞ is the lub of any non-repeating chain.

• ([0, 1] ⊆ R,⩽) is a cpo, but ([0, 1) ⊆ R,⩽) is not.

• (Q,⩽) is not a cpo, not just because it lacks a lub for Q itself, but also it doesn’t
contain

√
2, which can be expressed as the lub of an infinite sequence of rational

approximations.

• A flat domain S⊥ is a cpo, as the largest chains have two elements, and we always
pick the non-⊥ one as the lub.

If we require that our semantic domains are cpos, we know that the ascending Kleene chain
we saw earlier has a limit:

⊥ ⊑ f(⊥) ⊑ f(f(⊥)) ⊑ f(f(f(⊥))) ⊑ · · ·

The limit of this chain is2 ⊔
{fn(⊥) | n ∈ N}, where we are operating in the cpo of functions

Σ⊥ → Σ⊥.

Thesis

Semantic domains are cpos, ensuring the presence of these limits.

6 Continuity

By choosing a cpo for our semantic domain, we can ensure that the ascending Kleene chain
has a limit. However, it is not guaranteed that the limit we find will be a fixed point to our
monotonic function f.

Discontinuity

Consider this monotonic function g defined over a cpo (R ∪ {∞,−∞},⩽):

g(x) =

{
tan−1 x if x < 0
1 otherwise

Note this function is not continuous at 0. Starting from our ⊥ element −∞, we can see
that the limit of the ascending Kleene chain is 0:

g(−∞) = −π
2

g(−π
2 ) = −1

g(−1) ≈ −0.78

But g(0) = 1! – the lub of the ascending Kleene chain is not a fixed point!

To address this problem, we shall strengthen our requirement on functions from mere mono-
tonicity to continuity. Formally, a function f : A → B on cpos A and B is continuous iff for
all directed X ⊆ A,

1.
⊔
{f(x) | x ∈ X} exists, and

2. f(
⊔
X) =

⊔
{f(x) | x ∈ X}, i.e., f preserves lubs.

The intuition behind continuity is that “nothing is suddenly invented at infinity”: our func-
tion will behave analogously at the limit as it does for each element in our chain.

2The notation fn here refers to the n-fold self-composition of f.

5



Continuity implies Monotonicity

All continuous functions are monotonic. To see why, consider x ⊑ y. Then {x,y} is di-
rected with a lub of y. By the second condition above, we get f(y) = f(x) ⊔ f(y) which is
equivalent to f(x) ⊑ f(y).

Example (Monotonic but not Continuous)

As an example of another function that is monotonic but is not continuous, consider
this function from N ∪ {∞} → {⊤,⊥} defined by:

f(x) =

{
⊥ if x ∈ N
⊤ otherwise

Taking X = N (which is a directed subset of the cpo N ∪ {∞}), then f(
⊔
N) = f(∞) = ⊤,

but
⊔
{f(n) | n ∈ N} =

⊔
{⊥} = ⊥. Thus, this function is not continuous.

While monotonicity does not imply continuity (as we can see from the example above), it
does imply the first condition of continuity3. Thus, we can revise our definition of continuity
to the more commonly used definition below:

Alternative Definition of Continuity

A function f : A → B on cpos A and B is continuous iff:

1. f is monotonic, and

2. f(
⊔
X) =

⊔
{f(x) | x ∈ X}, for all directed X ⊆ A

Thesis

Computable functions are continuous functions on cpos.

7 Recursive Programs

Armed with all of our new mathematics, we can return to the problem of assigning seman-
tics to recursively defined programs.

The Kleene Fixed Point Theorem

Let (S,⊑) be a cpo and f : S → S be a continuous function. Then the lub of the ascending
Kleene chain

⊔
n∈N fn(⊥) is the least fixed point of f.

Proof: We apply continuity to show that it is a fixed point:

f(
⊔

n∈N fn(⊥)) =
⊔

n∈N f(fn(⊥)) (continuity)

=
⊔

n∈N fn+1(⊥)

=
⊔

n=1,2... f
n(⊥) (reindexing)

= ⊥ ⊔
⊔

n=1,2... f
n(⊥)

=
⊔

n∈N fn(⊥)

3The proof of this is an exercise.

6



To see that it is the least fixed point: Let y be a fixed point of f. We know that ⊥ ⊑ y by
definition of ⊥. Taking f of both sides, we get f(⊥) ⊑ y. We can continue this inductively
and thus we know that, for all n ∈ N, fn(⊥) ⊑ y. Because y is, therefore, an upper bound
of the ascending Kleene chain, it must also be at least as large as the lub of that chain.

Armed with this theorem, we can return to our semantics of while loops, and at last define
their semantics without relying on dubious recursive definitions:

Jwhile b do c odKC = fix(f)

where f(X) σ ≜

{
X (JcKC σ) if JbKB σ = T

σ otherwise

Here fix(f) is the least fixed point that we get from Kleene’s fixed point theorem, i.e.
⊔

n∈N fn(⊥).
Proof that f is continuous is technically required but is omitted here.

Example

• What is fix(id) where id is the identity function on B⊥?⊔
{⊥, id(⊥), id(id(⊥)), . . . } = ⊥

• What is fix(κF) where κF is the constant function that always returns F?⊔
{⊥, κF(⊥), κF(κF(⊥)), . . . } = F

• What is fix(f) where
f : [N⊥] → [N⊥]
f(x) = 1 :: x

(assuming these are Haskell-style lists)?⊔
{⊥, 1 :: ⊥, 1 :: 1 :: ⊥, . . . } = 1 :: 1 :: 1 :: · · ·

Here fix(f) would be the semantics of the recursive definition ones = 1 :: ones.

We can at last use fix(f) to give semantics to recursive programs. Consider the function
Φ ∈ (N⊥ → N⊥) → (N⊥ → N⊥), given by:

Φ(f) = λn. if n = 0 then 1 else n · f(n− 1)

Looking at the first few elements of our ascending Kleene chain, we get:

Φ0(⊥) = λn. ⊥ (i.e. ⊥ in N⊥ → N⊥)
Φ1(⊥) = λn. if n = 0 then 1 else ⊥
Φ2(⊥) = λn. if n = 0 then 1 else n · (if n− 1 = 0 then 1 else ⊥)
· · ·

Continuing on, we see that themth approximationΦm(⊥) to fix(Φ) is the function that gives
x! for allxup tom, and diverges for all other arguments. Hence the limit fix(Φ) is the factorial
function on N⊥!

Exercises

1. Give an example of a poset A and a monotonic function f : A → A such that f doesn’t
have a fixed point.

7



2. What is the lub operator on subsets X ⊆ N of the poset (N,⩽)?

3. Show that if a function f : A → B on cpos A and B is monotonic and A is finite, then f

is continuous.
Hint: Finite directed sets contain their lub

4. Show that if a function f : A → B on cpos A and B is monotonic, then
⊔
{f(x) | x ∈ X}

exists.
Hint: It suffices to show that {f(x) | x ∈ X} is directed.

5. a) Show that ifA andB are posets andX ⊆ A×B is directed, then the subsetsπ0(X) ⊆
A and π1(X) ⊆ B (defined below) are also directed.

π0(X) = {a ∈ A | ∃b ∈ B. (a,b) ∈ X}

π1(X) = {b ∈ B | ∃a ∈ A. (a,b) ∈ X}

b) Give an example of a set X ⊆ {⊤,⊥}× {⊤,⊥} such that π0(X) and π1(X) are directed,
but X is not.

c) Show that if A and B are cpos and X ⊆ A× B is directed, then⊔
X =

(⊔
π0(X),

⊔
π1(X)

)
Note: Together with ⊥A×B = (⊥A,⊥B) this shows that the Cartesian product of
two cpos is itself a cpo.

6. Write down the first few approximationsΦm(⊥) to fix(Φ), where the higher order func-
tion Φ : (Z⊥ → [Z⊥]) → (Z⊥ → [Z⊥]) is given by:

Φ(f) = λn. n :: f(n+ 1)

What is Φm(⊥)? What is fix(Φ)?

7. Repeat the same process as the previous question, but this time for a new higher order
function Φ : (Z⊥ → Z⊥) → (Z⊥ → Z⊥) given by:

Φ(f) = λn. if n = 0 then 0 else f(n− 2)

Glossary

ω-chain A chain with countable elements. 2, 4, 8, 9

ω-cpo A cpo which is complete for ω-chains, as opposed to the stronger dcpos which are
complete for directed subsets. 4, 9

ascending Kleene chain The ω-chain that results from the iterated application of a mono-
tonic function f to ⊥, i.e. ⊥ ⊑ f(⊥) ⊑ f(f(⊥)) ⊑ f(f(f(⊥))) ⊑ · · · . 2, 5–7

associative An operator ⊔ is associative if x ⊔ (y ⊔ z) = (x ⊔ y) ⊔ z. 4

chain A chain in a poset X is a totally ordered subset of X. 2–5, 8

complete A poset is complete if lubs exist for the empty set (i.e. a bottom element) and for
all directed subsets. 1, 4, 8, 9

consistent A set is consistent if it has an upper bound. 3

8



continuous A function f : A → B on cpos A and B is continuous iff f is monotonic and
f(
⊔
X) =

⊔
{f(x) | x ∈ X} for all directed X ⊆ A. 1, 5–7, 9

cpo A cpo or a complete partial order is a poset which is complete. 1, 4–6, 8, 9

dcpo A cpo which is complete for directed subsets, as opposed to ω-cpos which are only
complete for ω-chains. 4, 8

directed A non-empty set is directed if every pair of values has an upper bound in the set.
2–6, 8, 9

fixed point A value x is a fixed point of a function f if f(x) = x. 1, 2, 5–7

idempotent An operator ⊔ is idempotent if x ⊔ x = x. 4

lub The least upper bound. 3–8

symmetric An operator ⊔ is symmetric if x ⊔ y = y ⊔ x. 4

top A top element of a set X, written ⊤, is an element that is an upper bound to all elements
in the set, i.e. ∀x ∈ X.x ⊑ ⊤ . 3

totally ordered A poset is totally ordered if all elements are comparable. 2, 8

upper bound The upper bound of a set Y is some x such that ∀y ∈ Y.y ⊑ x. 2, 3, 7–9

9


	Introduction
	Fixed Points
	Chains and Directed Sets
	Directed Sets
	An Equivalent Definition


	Least Upper Bounds
	Complete Partial Orders
	Continuity
	Recursive Programs

