
Domain Theory
Part 1: First Steps to Scott Domains

Dr. Liam O’Connor
based on material from

Graham Hutton, Dana Scott, Joseph E. Stoy, Carl Gunter, Glynn Winskel

March 4, 2024

1 Denotational Semantics

In this course we are concerned with programming languages, which, as with natural lan-
guages, consist of a syntax and semantics.

The syntax of a language is for our purposes just an inductively-defined tree structure (i.e.
abstract syntax), defined using notation similar to BNF.

Example (A Simple Imperative Language)

Let’s define a syntax for a simple imperative language, called C:

E ::= n | x | E1 + E2 | E1 − E2
B ::= false | true | ¬B | E1 = E2
C ::= skip | x := E | C1;C2 | if B then C1 else C2

x ∈ V (variables)
n ∈ Z

Domain theory comes in handy when we use denotational semantics. The structure of such
a semantics corresponds to the syntactic structure of the language. In the example above,
there are three syntactic categories1: E, B, and C. A denotational semantics consists of, for
each syntactic category X:

1. A semantic domain D which can be any set of mathematical objects (although, as we
will see later, it is helpful if it obeys certain properties).

2. A valuation function J·K : X → D. We require that this function be a homomorphism,
that is that it is compositional. This means that the denotation (or valuation) of an
expression should be made from the denotation of its components. In other words,
for each syntactic constructor C(e1, e2, . . .), we should have a mathematical operation
f(x1, x2, . . .) such that the denotation of C can be defined as:

JC(e1, e2, . . .)K = f(Je1K, Je2K, . . .)

The choices of these objects is, essentially, arbitrary: we choose objects that reflect those
aspects of our programs that we are interested in. For most of the simple languages we will
examine, we are only concerned with the results of the computation, which is a semantics

1not that kind

1

suitable for reasoning about program behaviour and correctness. However, there also exist
denotational cost models that compositionally assign a measure of program performance
to syntax. This measure is just another kind of denotational semantics.

Example

Defining a denotational semantics for our language above, we shall first select a seman-
tic domain for each syntactic category:

E ≜ Σ → Z
B ≜ Σ → B
C ≜ Σ → Σ

Here, Σ represents the set of states, which contains the values assigned to all variables:

Σ ≜ V → Z

Now, we define our valuation functions:

J·KE : E → E

JnKE σ = n

JxKE σ = σ(x)
Je1 + e2KE σ = Je1KE σ+ Je2KE σ

Je1 − e2KE σ = Je1KE σ− Je2KE σ

J·KB : B → B

JfalseKB σ = F

JtrueKB σ = T

J¬bKB σ =

{
F if JbKB σ = T

T otherwise

Je1 = e2KB σ =

{
T if Je1KE σ = Je2KE σ

F otherwise

J·KC : C → C

JskipKC σ = σ

Jx := eKC σ = σ (x 7→ JeKE)
Jc1; c2KC σ = Jc2KC (Jc1KC σ)

Jif b then c1 else c2KC σ =

{
Jc1KC σ if JbKB σ = T

Jc2KC σ otherwise

2 Recursion

So far, our semantic domains have just been (functions of) sets. While these have the advan-
tage of being mathematically simple and intuitive, two language features make these sets
insufficient for our purposes:

1. Recursively defined programs, for dealing with recursion and loops, and

2. Recursively defined semantic domains, for dealing with higher-order programs.

2

2.1 Recursively Defined Programs

Suppose we extended our above example with a while loop construct:

C ::= · · · | whileB do C od

The intuitive way to assign a semantics would be to use a recursive function:

Jwhile b do c odKC σ =

{
Jwhile b do c odKC (JcKC σ) if JbKB σ = T

σ otherwise

However, such an equation is not a good definition. If we consider the trivial infinite loop
program L ≜ while true do skip od, and compute its semantics, we end up with:

Jwhile true do skip odKC σ = Jwhile true do skip odKC σ

This equation is satisfied by any function Σ → Σ, so it doesn’t tell us which function corre-
sponds to the program L.

More generally, allowing our functions to be (generally) recursive causes these issues. The
loop program L gives rise to the recursive equation ℓ(x) = ℓ(x), which has an infinite number
of solutions.

If we add recursion to our programming language, we could have programs that give rise
to more complex recursive equations like f(x) = f(x) + 1. By contrast to ℓ(x), f(x) has no
solutions2.

Upshot

We need an explicit notion of “non-termination” on the semantics level, to properly deal
with general recursion (or iteration).

2.2 Recursively Defined Semantic Domains

Suppose we extend our notion of expressions with parameterless higher-order (parameter-
less) procedures:

E ::= · · · | proc C

Example (Higher-order procedures)

We can store procedures in variables, so the program:

inc := (proc a := a+ 1); inc; inc

has the same effects on the variable a as the program:

a := a+ 1;a := a+ 1

Our semantic domains now take this form, where blue parts are new, and ⊎ denotes disjoint
union:

E ≜ Σ → Z
B ≜ Σ → B
C ≜ Σ → Σ

Σ ≜ V → (Z ⊎ C)
2Assuming f(x) operates on integers

3

Unfolding the definition of Σ, we end up with a recursive equation for the definition of C:

C = (V → (Z ⊎ C)) → (V → (Z ⊎ C))

Such equations have no set-theoretic solution, even if we weaken equality to mere set iso-
morphism (≃).

Why?

As a simpler example, consider the recursive equation X = X → B. Cantor’s theorem
says that there is no set X such that X ≃ P(X) (where P(X) is the power set of X), and
seeing as P(X) ≃ (X → B) it follows that X = X → B has no solution.

Any kind of higher-order construct leads to such recursive domain equations.

Upshot

There are no (nontrivial) set-theoretic solutions to the recursive domain equations that
arise from higher-order language constructs.

We will return to this problem later on! For now, let’s focus on representing non-termination.

3 Flat Domains

We shall, following Scott, introduce a special bottom value ⊥ to each of our elementary se-
mantic domains.

⊥ represents

an undefined value;
an error value;
a non-terminating computation.

Given a set X, the flat domain (or li�ed set) X⊥ is just the set X ∪ {⊥} (where ⊥ /∈ X). There is
a natural information ordering ⊑ on X⊥:

· · · · · ·

· · ·· · ·

(bottom)

(elements of X)• • • •

⊥

Formally, we say x ⊑ y iff (x = y∨ x = ⊥).

Example

Consider again our function f(x) = f(x) + 1. If we extend addition to operate on the
flat domain Z⊥ such that ⊥ + x = ⊥, then this equation has a single unique solution:
f(x) = ⊥. That is, the function f always returns bottom, indicating non-termination.

For our equation ℓ(x) = ℓ(x), which has an infinite number of solutions, we may now
pick the least solution in our information ordering, which is similarly ℓ(x) = ⊥.

Warning: Don’t confuse the information ordering on numbers, i.e. ⊑ on Z⊥, with the numer-
ical ordering ⩽ on Z. We know 0 ⩽ 1, but 0 and 1 are not comparable in our flat information
ordering.

4

4 Combining Domains

Some of our semantics may depend on the combination of multiple domains, i.e. semantic
functions of multiple arguments. As an example, the semantics of an if statement combines
the semantics of the condition and the semantics of each of the two branches. Let’s consider
functions f : X × Y → Z, where X and Y are flat domains and where X × Y is the cartesian
product of X and Y.

For such semantics, flat domains are no longer sufficient. We may define the information
ordering of the product X× Y in terms of the flat orderings on X and Y separately:

(x,y) ⊑ (x ′,y ′) iff x ⊑ x ′ ∧ y ⊑ y ′

Intuitively, this says that “the information content of a pair of values is increased by increas-
ing the information of either or both of its component values”.

This semantic domain is no longer flat, but it is still a pointed partial order where the
bottom value ⊥A×B is (⊥A,⊥B). Consider B⊥ × B⊥:

(F, F) (F, T) (T , F) (T , T)

(F,⊥) (⊥, T) (⊥, F) (T ,⊥)

(⊥,⊥)

Theorem

If two sets X and Y are pointed posets, then so is X× Y with ⊥X×Y = (⊥X,⊥Y).

5 Monotonic Functions

If we model our semantic domains for values with pointed posets, then programs are mod-
elled by functions between such posets. But, not all functions are suitable.

Example

The function H : B⊥ → B⊥ seems to let us solve the halting problem, assuming ⊥ rep-
resents non-termination:

H(v) =

{
F if v = ⊥
T otherwise

It stands to reason that the amount of information we get out of our functions should grow
as we increase the amount of information we put into them. Formally, we require of a func-
tion f : X → Y between posets X and Y, for all x,y ∈ X:

x ⊑ y implies f(x) ⊑ f(y)

Such functions are called monotonic. These functions preserve the information ordering,
but they are not required to preserve the bottom element ⊥. Functions for which f(⊥) = ⊥
are called strict.

5

Thesis

Computable functions are monotonic (observe that H is not).

Exercises

1. Consider the functions B⊥ → B⊥. Which ones are monotonic? There are a total of 27
such functions but only three significant classes.

2. Let KK denote the chain of values x1, x2, x3, . . . , xK where a ⩽ b implies xa ⊑ xb. There
is one monotonic function K1 → K1:

• •

And there are three monotonic functions K2 → K2:

• •

• •

• •

• •

• •

• •

a) Write down the monotonic functions K3 → K3.

b) Write a simple recursive program to calculate the number of monotonic functions
Kn → Km.

3. Give a semantics to the proc construct:

a) Jproc cKE σ = ?

b) JxKC σ = ?

Glossary

antisymmetric A relation R is antisymmetric if, for all x and y, x R y and y R x implies x = y

(but sometimes this equality is weakened to some kind of isomorphism). 7

bijection A bijection between A and B is a mapping (or homomorphism) f : A → B and an
inverse f−1 : B → A such that f ◦ f−1 and f−1 ◦ f are identity functions. 7

BNF The Backus-Naur Form notation for writing grammars. 1

bottom An information-free value that is added to our domains to represent undefined or
non-terminating computations, written ⊥. It is always the least value of the informa-
tion ordering. 4, 5, 7

cartesian product The cartesian product of two sets A and B, written A×B, is the set of pairs
{(a,b) | a ∈ Ab ∈ B}. 5

compositional The requirement that the denotation of an expression be defined in terms of
the denotations of its subexpressions. 1, 7

denotational semantics The definition of semantics by the compositional assignment of a
mathematical object to each piece of syntax. 1, 2

6

disjoint union Also called a sum, the union of two sets where “tags” are added to ensure
disjointness: A ⊎ B = {(0, x) | x ∈ A} ∪ {(1, x) | x ∈ B}. 3

flat domain A flat domain (or li�ed set) X⊥ is just the set X augmented with an additional
bottom value ⊥. 4, 5

higher-order Higher-order programming constructs allow programs to be treated as first-
class citizens, i.e. values. 2–4

homomorphism A structure-preserving map. In the case of a valuation function, it means
that it is compositional. 1, 6, 7

identity function A function characterised by f(x) = x. 6

information ordering An ordering, written ⊑, usually a partial order, on elements of the se-
mantic domain, with the bottom element as the least value.. 4, 5

monotonic A function f : X → Y on posets X and Y is monotonic if, for all x,y ∈ X, x ⊑ y

implies f(x) ⊑ f(y) . 5, 6

partial order A partial order on X is a relation ⪯ on X which is reflexive, transitive, and anti-
symmetric.. 5, 7

pointed A set X is pointed if it contains one element x ∈ X. If X is a poset this is the bottom
element. 5, 7

poset A set X equipped with a partial order on X. 5, 7

power set The power set of X is the set of all subsets of X, o�en written P(X). 4

reflexive A relation R is reflexive if, for all x, x R x. 7

semantic domain A set of mathematical objects which model the semantics of a language’s
syntax. 1, 2, 7

semantics The meaning of a term in a language. 1, 6, 7

set isomorphism Two sets A and B are isomorphic if there exists a bijection between them.
. 4

strict A function f : X → Y on pointed sets X and Y is strict if f(⊥X) = ⊥Y . 5

syntax The grammatical structure of a language, usually represented as an inductively-
defined tree structure. 1, 6, 7

transitive A relation R is transitive if, for all x, y and z, x R y and y R z implies x R z. 7

valuation function A function that assigns to an input expression an element of that expres-
sion’s semantic domain. Normally required to be compositional, i.e. a homomorphism
. 1, 2, 7

7

	Denotational Semantics
	Recursion
	Recursively Defined Programs
	Recursively Defined Semantic Domains

	Flat Domains
	Combining Domains
	Monotonic Functions

